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Summary

The aim of this Thesis is to propose a novel way to investigate wall-bounded
turbulent flows, which relies on complex networks. The combination of fluid dy-
namics and complex networks theory results in an innovative and strongly multi-
disciplinary approach, which has been attracting growing interest. Differently from
classical statistics, complex networks represent a suitable and powerful tool to cap-
ture and study the inter-connections between the elements of a discrete complex
system. Therefore, the idea behind this work is to take advantage from the great
developments of the recently established network science, to advance the level of
information of classical statistics in the spatio-temporal characterization of wall
turbulence.

Three main approaches are pursued to analyse turbulent flows in the view of
(i) one-point time-series, (ii) Eulerian spatio-temporal fields and (iii) Lagrangian
particle trajectories. About the first approach, one-point time-series are mapped
in complex networks in which nodes correspond to temporal data, while links are
established by means of the visibility algorithm. Here, for the first time the visibility
algorithm is used to investigate a (numerically simulated) turbulent channel flow
and a passive scalar plume in an experimental turbulent boundary layer. In both
cases, particular efforts are paid to relate network metrics to the temporal structure
of the signals. This fundamental issue has often been disregarded, since the meaning
of the metrics has usually been interpreted only as a network feature rather than a
signal feature. Results show that the visibility-based networks are able to quantify
the presence of small fluctuations in the series, as well as the relative intensity of
extreme events and their temporal occurrence. This information – usually hidden
in classical statistics based on the signal PDF – is crucial, e.g., in the dispersion of
contaminants in the atmospheric turbulent boundary layer, which is tackled in this
Thesis via an experimental study.

The second approach concerns the Eulerian framework, and complex networks
are exploited to explicitly emphasize high-correlation regions in a turbulent chan-
nel flow. In this case, nodes correspond to grid points and represent the volume of
each cell in the computational domain. In this way, we extend the idea pursued in
climate network analysis to weigh nodes on the corresponding surface areas. Links
are activated if the two-point correlation of the velocity field is above a suitable
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threshold, which is chosen in order to highlight large (positive and negative) cor-
relation values. The main outcome is represented by the appearance of long-range
connections – referred to as teleconnections – between distant near-wall locations.
Teleconnections are found to be associated to an analogous response of the near-wall
velocity field due to large-scale motions. The spatial texture of teleconnections is
straightforwardly highlighted by the network links, which – differently to the classi-
cal average correlation – is able to retain the spatial information of high correlation
coefficients.

Finally, in the third approach, fluid particle trajectories are exploited to study
turbulent mixing in a channel flow by means of a time-varying weighted network.
In this framework, nodes correspond to groups of particles and a spatial proximity
criterion is employed to establish (weighted) links in the network, whose structure
evolves in time. By doing so, we are able to clearly identify characteristic regimes
of particle dispersion, as well as the interplay between advection and mixing on
particle dynamics. The Lagrangian time-varying network approach, therefore, is
able to capture the transient effects of the particle dynamics, differently from other
works in which the full trajectories are exploited to activate links (thus loosing
transient mechanisms).

For each of the three perspectives, complex networks reveal to be an effective
tool to capture turbulence features that would be complicated to highlight through
other techniques. More in details, complex networks are fully able: to inherit
higher-order information of time-series (by highlighting the occurrence and rela-
tive intensity of extreme events); preserve the spatial information of correlation in
all directions between different (even long-range) spatial locations; and to reveal
local and global mixing effects of particle dispersion (thus providing in a unique
framework a geometrical representation of particle dynamics over time). Based
on present findings, the complex network approach can pave the way for a novel
multidisciplinary research area that, beyond the proposed applications, can involve
other turbulence configurations as multiphase and thermal or density inhomoge-
neous flows.
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Chapter 1

Introduction

“When things get too complicated,
it sometimes makes sense to stop
and wonder: have I asked the right
question?”

Enrico Bombieri

Fluid dynamics has always played a crucial role in aerospace engineering re-
search. The rapid technological developments of the aeronautical industry pursued
at the beginning of the last century, have largely benefited from the advances in
the understanding of fluid-structure interaction. In practical applications, in fact,
fluid flows interact with solid surfaces (e.g., an aircraft wing or a rotor blade), thus
inevitably generating a thin boundary layer in which the effects of fluid viscosity
are substantial. In the more general area of fluid dynamics, turbulent flows de-
serve peculiar attention, since they are associated with energy and power losses in
transporting fluid (e.g., in pipes and channels) of moving object through the fluid
(i.e., basically any transportation system, from aircraft to cars and ships). The im-
portance of understanding turbulent flows – i.e., their origin, their spatio-temporal
organization and their control – is corroborated by their appearance in almost all
practical applications. Consequently, turbulent flows have always raised the interest
of different scientific communities, either engineering, physical or mathematical.

Despite important progresses have been achieved in the last century about the
characterization of turbulence, fundamental issues – e.g., concerning statistics scal-
ing, coherent motion or energy consumption – are still the object of a worldwide
active research. In last decades, in particular, thanks to the outstanding growth
of computational technologies, a huge amount of data has been generated for val-
idating existing theories and finding out unknown turbulence features. The large
availability of data has allowed to tackle the intrinsic complexity of turbulence via
a novel perspective, namely the data-driven approach has been established instead
of the (classical) theoretical approach. With the aim to overcome the boundaries
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of turbulence complexity, therefore, novel tools of analysis have been continuously
developed to exploit such big-data.

Among other techniques, network science – i.e., the study of complex systems
by means of complex networks – strikingly emerged in the last twenty years, pro-
viding a framework to investigate several real-world complex systems. Examples
are social interactions, biological processes, trades and economic systems as well as
transportation and computer science. The peculiarity behind the great success of
network science is its ability to highlight non-trivial features of the whole complex
system, through a texture of simple pairwise connections between the constitutive
elements of the system. Although they were historically developed for the study
of social behaviours, complex networks have recently found a breeding ground in
technical applications (e.g., computer science, brain diseases and climate studies),
providing a strongly multi- and inter-disciplinary lens on (among others) physi-
cal and engineering problems. As a consequence, a change of paradigm has come
into being, from the classical social network analysis to a physics-based network
approach.

The present Thesis aims to provide a basis for a novel perspective on the spatio-
temporal characterization of wall turbulence, which fully takes advantage from
the great potential offered by network science. In fact, although turbulence and
network science have been singularly investigated, the combination of turbulent
flows and complex networks results in a strongly innovative and multidisciplinary
approach. Accordingly, complex networks are used in this Thesis to capture in
a systematic way non-trivial features of turbulent spatio-temporal fields, such as
the occurrence and relative intensity of extreme events in one-point signals, the
emergence of strongly correlated regions displaced at distant spatial locations, as
well as the interplay between mixing and advection in the dispersion of a set of
fluid particles. These outcomes, which would be complicated to highlight by means
of other techniques, are straightforwardly characterized by complex network tools.
In light of this, the present work aims to cover different viewpoints on turbulence,
namely time-series analysis as well as the Eulerian and Lagrangian perspectives.
Complex networks can then be generated according to turbulence data availability,
each representing a different scenario of analysis. Therefore, based on the findings
reported in this work, the network-based approach can be effectively employed
– beyond the proposed applications of wall-bounded turbulent flows – to other
turbulence configurations, such as flows with thermal or density inhomogeneity,
compressible flows, as well as multiphase flows.

The Thesis is organized as follows.

Chapter 2 comprises an introduction to turbulent flows with emphasis on wall-
bounded turbulence. The main features of wall turbulence are outlined and its wall-
normal structure is described in terms of the characteristic physical parameters. A
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brief survey of the main open issues and achievements in different sub-areas of
wall turbulence is also reported, thus providing a literature background for the
network-based applications pursued in this work.

Complex networks are introduced in Chapter 3. The principal applications as
well as the historical background that has led to the development of a science of
networks are briefly presented. An overview of the main network definitions is
also reported in Chapter 3, which delineates the features and the mathematical
formulation of the network metrics exploited in this work.

The three approaches to map turbulent spatio-temporal fields into complex
networks – i.e., time-series, Eulerian and Lagrangian viewpoints – are illustrated in
Chapter 4. An up-to-date review of the network-based applications to vortical and
turbulent flows is reported, by highlighting the difference and analogies between
the methodologies that have been developed so far and the approaches proposed in
the present work.

Results for each of the three approaches are shown and described in Chap-
ter 5, Chapter 6 and Chapter 7. Specifically, the time-series analysis of turbulence
data is reported in Chapter 5, in which the visibility graph method is exploited to
map time-series into complex networks. Two wall-bounded turbulence setups are
investigated: (i) a numerically simulated turbulent channel flow from the Johns
Hopkins turbulent database (JHTDB) that is publicly available online; (ii) experi-
mental data of a passive scalar plume in a turbulent boundary layer. Experimental
data are measured in the Laboratoire de Mécanique des Fluides et d’Acoustique in
collaboration with Professor P. Salizzoni (École Centrale de Lyon).

The Eulerian approach to turbulence is delineated in Chapter 6, in which a
numerically simulated turbulent channel flow is exploited to build spatial networks
by thresholding velocity-based correlation coefficients. Data from the numerical
simulations are obtained in collaboration with Professor J.G.M. Kuerten (Eind-
hoven University of Technology), for different temporal windows and two Reynolds
numbers. The numerical code and runs are acknowledged to Prof. Kuerten.

Chapter 7, instead, shows the results of turbulent mixing analysis in a La-
grangian viewpoint. Particle trajectories extracted from a numerically simulated
turbulent channel flow are exploited to build a complex network that evolves in
time, to capture transient effects of mixing and advection. Similarly to the Eu-
lerian approach, even in this case the numerical simulation exploited to extract
particle trajectories is performed in collaboration with Professor J.G.M. Kuerten
(Eindhoven University of Technology). The numerical code and runs are acknowl-
edged to Prof. Kuerten.

Finally, Chapter 8 summarizes the results obtained in this work and draws some
concluding remarks.
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Chapter 2

Turbulent flows

“In any case there is considerable
‘turbulence’ in the attempts to
define what is turbulence”

Arkady Tsinober

Fundamental features of turbulence are introduced in this Chapter, by providing
an overview of the main achievements obtained so far, current open issues as well
as typical tools for turbulence analysis. In particular, wall-bounded turbulent flows
are focused as they represent the object of this work. From an engineering point
of view, in fact, wall-bounded turbulence plays a crucial role for technological,
energetics and environmental developments.

The Chapter is organized as follows. In Section 2.1 the main general fea-
tures of turbulence are reported. Section 2.2 comprises the description of wall-
turbulence features as a function of the distance from the wall. The main theo-
retical and practical achievements and challenges in wall-turbulence are reported
in Section 2.3; specifically, emphasis is given to scaling and coherent motion anal-
yses (Section 2.3.1) as well as the dispersion of passive scalar in wall-turbulence
(Section 2.3.2).

2.1 Introduction
The possibility to understand and predict the behaviour of fluids has always

been a crucial aspect in scientific research, due to the importance of gases and liq-
uids in everyday life. By looking at the fluid motion in nature, it clearly appears
that – except few rare cases – the behaviour of gases and liquids is characterized by
a chaotic, complicated and unpredictable motion, which is referred as turbulence.
Despite the ubiquitous nature of turbulent flows, their definition is still lacking due
to the huge complexity intrinsic to turbulence. Therefore, in order to understand
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turbulence physical features, the typical approach is to show examples of turbulent
flows, as reported in the firsts chapters of several well-established textbooks con-
cerning turbulence (among others, see [1–5]). The atmospheric and oceanic flows,
the wake past vehicles and aircraft, the surface of stars (e.g., the Sun), as well as
the flow in pipes, clouds, rivers and chemical reactors are just few examples of the
plethora of applications in which turbulence is involved. In the case of atmospheric
flows (e.g., see Figure 2.1), turbulence understanding is fundamental, for instance,
for climate analyses, dispersion of contaminants as well as cloud formation [6]. Be-
sides, turbulence plays a major role in engineering applications, such as aeronautics,
automotive, civil and mechanical engineering, where the understanding of the ef-
fects induced by the interaction turbulence-structure (e.g., drag or lift forces) is
fundamental.

Despite the lacking of a conclusive definition, some characteristic features of tur-
bulent flows have been outlined so far by relying on everyday experience [1]. The
irregularity (i.e., the chaotic motion) and the intense vorticity (i.e., the swirling be-
haviour) are undoubtedly the most apparent features of turbulence. In this respect,
non-linearity in the equations of motion (i.e., Navier-Stokes equations) plays a key
role in generating turbulence as a chaotic and (apparently) random process. One of
the most important consequences of this chaotic motion is the ability of turbulence
to enhance mixing – that is the transport of momentum, heat and mass – which
is much higher than molecular diffusion [7, 8]. Moreover, turbulence produces dis-
sipation, as the turbulence kinetic energy is converted into internal energy of the
fluid by means of viscous shear stress. It directly follows that without a supply of
energy, turbulent processes rapidly decay. Specifically, the distribution of kinetic
energy is not uniform in a turbulent flow, but it depends on the considered scale.
Indeed, turbulence possesses a wide range of coexisting and interacting scales in
space and time: they range from the largest scales, which are related to the geom-
etry in which the flow develops, to the smallest ones, which are the scales where
dissipation acts [4]. The typical visualization of a highly turbulent flow, in fact,
is characterized by the presence of several vortical structures of different nominal
sizes (e.g., see Figure 2.1). The degree of separation between large and small scales
is regulated by the Reynolds number: for increasing values of the Reynolds num-
ber, the size of the smallest scales decreases (as the largest one are usually fixed
by boundary conditions). Since turbulent flows in nature display high values of the
Reynolds number, the smallest scales are many order of magnitude lower than the
largest scales: this turns out to be a crucial issue for turbulence simulations and
experimental reproducibility. Finally, turbulence involves three-dimensional (3D)
processes, since vortex-stretching (that is a fundamental turbulence maintaining
mechanism) requires 3D vorticity fluctuations [1]. However, it should be noted
that in many physical systems – such as large scale circulation in atmospheric and
oceanic flows – the two-dimensional approximation takes relevant information on
the dynamics of the fluid [9].
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Figure 2.1: A large-scale visualization of a numerically-simulated turbulent atmo-
spheric air-flow [10].

Since there are many ways in which a turbulent flow can arise with its specific
features (e.g., homogeneity, isotropy, body forces, compressibility, magnetic fields
and so on) there is not a unique problem about turbulence to address, but several
inter-related problems that depend on the specific setup [5, 11]. In this work, wall-
turbulence is focused because it plays a crucial role in industrial and engineering
applications, as any product (e.g., pipelines, aircraft, ships, vehicles, combustors)
have to interact with turbulence through a solid surface. Moreover, the atmospheric
air motion is also a bounded turbulent flow as it must interact with the ground,
including the effects of land morphology and urbanization. As a paradigmatic
example, it is estimated that about a quarter of the energy spent by industry
and transportation is used to move fluids in pipelines or to overcome the drag
force in vehicles [12]. Furthermore, other estimates indicate that a 5% reduction
of the transportation energy loss in the US would have an environmental impact
comparable to a doubling of wind energy production [13]. The investigation of wall
turbulence, therefore, has a direct impact in improving both environment-related
technologies and industrial performances.

2.2 Structure and features of wall-turbulence
In this section, the wall-normal structure of wall-bounded turbulent flows is

described by highlighting its main characteristics. Although many features here
reported are also shared with other geometries (e.g., pipe flows), we focus only on
two setups: turbulent channel flow and turbulent boundary layer. In both con-
figurations, we investigate fully-developed turbulence, namely we focus on spatial
regions that are far enough from the flow inlet. In what follows, we indicate the
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streamwise, wall-normal and spanwise directions as x, y and z, respectively. The
corresponding velocity components in each direction are indicated as (U, V, W ) and
(u′, v′, w′) for the mean velocity and their fluctuations, respectively. In particular,
the mean velocity is evaluated by averaging in time and over homogeneous direc-
tions. For both configurations analysed, V = W = 0 as the mean flow direction is
streamwise. Furthermore, we focus only on flows that are statistically stationary
and homogeneous in the spanwise and streamwise directions, with no-slip condition
at the wall.

Figure 2.2: 3D view of a channel flow at Reτ = 180 (see Appendix B.3). A view
of a two-dimensional section at z+ = 200 is also illustrated where colors refer to
the streamwise velocity fluctuation, u′. The mean flow is from left to right, i.e. for
increasing x+ values.

To characterize the turbulent channel flow and the turbulent boundary layer,
two Reynolds numbers are defined, respectively, as

Reτ ≡ Huτ

ν
, Reδ ≡ δU∞

ν
, (2.1)

where uτ is the friction velocity, ν is the kinematic viscosity of the fluid, H is the
half-channel height, while δ and U∞ are the thickness and free-stream velocity in the
boundary-layer flow, respectively. In particular, uτ takes into account the friction
at the wall and is defined as uτ ≡ (τw/ρ)0.5, where ρ is the fluid density and τw is
the wall shear stress. Accordingly, wall-units are defined in terms of uτ and ν with
the superscript +: lengths and times are normalized by dividing ν/uτ and ν/u2

τ ,
respectively, while velocities are simply normalized by uτ . As an example of setup,
Figure 2.2 shows a three-dimensional view of a numerically simulated turbulent
channel flow at Reτ = 180, where colors in a (x+, y+)-plane are the values of the
streamwise velocity fluctuation, u′, in that section.

Since the presence of the wall introduces anisotropy in the flow along the y
direction, the vertical coordinate in wall-units, y+ = yuτ /ν, is used to discriminate
different regions in the flow. Accordingly, the parameters that are involved in the
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wall-normal layer characterization of the flow can be classified based on the distance
from the wall. Near-wall parameters (i.e. very close to the wall) are represented
by the viscosity and the friction velocity; on the other hand, outer-flow parameters
are related to the geometry (via H or δ) and the external velocity (that is the
centreline velocity, Uc, for the channel flow and the free-stream velocity, U∞, for
the boundary layer). In the following, in order to simplify the description, we only
focus on the channel flow configuration; however, similar findings are valid for the
turbulent boundary layer if δ and U∞ are used in place of H and Uc, respectively.

The relative effects of near-wall and outer-flow parameters on the flow features
discriminate different regions along the wall-normal direction. Such regions are
basically related to the behaviour of the mean velocity, U , and the shear stress,
τ [14]. In particular, τ is made up of two contributions

τ(y) = ρν
dU

dy
− ρ⟨u′v′⟩, or τ(y+)

ρu2
τ

= dU+

dy+ − ⟨u′v′⟩
u2

τ

, (2.2)

where −ρ⟨u′v′⟩ is the Reynolds shear stress and ρνdU/dy is the viscous stress.
While the mean velocity gradient (in wall-units) takes into account the contribu-
tion to the shear stress due to viscosity, the Reynolds shear stress quantifies the
contribution due to turbulent velocity fluctuations. In Eq. (2.2), ⟨•⟩ indicates av-
eraging over homogeneous directions and time, while the minus sign is due to the
fact that ⟨u′v′⟩ < 0. It should be noted that, for the channel flow τ = τ(y+), while
τ depends also on the streamwise location, x, in a boundary layer. However, at
fixed x-coordinate, a similar reasoning holds for the channel and boundary layer
flows.

In order to illustrate the characteristic regions in a wall-bounded turbulent flow,
in Figure 2.3 we report the behaviour of the mean velocity (Figure 2.3(a)) and
the two contributions to the total shear stress (Figure 2.3(b)), for a numerically
simulated turbulent channel flow at Reτ = 950. From the point of view of the
mean velocity, the inner layer is defined as the region for y/H ≪ 1 (at high
Reynolds numbers) in which U+ depends only on near-wall (viscous) parameters.
Specifically, the inner layer is conventionally limited to y/H = y+/Reτ < 0.1 [4].
On the contrary, the outer layer is defined as the region in which the effect of
viscosity on U+ is negligible, and it ranges for y+ > 50 [4]. The region for y+ < 50,
therefore, is indicated as viscous wall region, as the viscous contribution to the
total shear stress is significant (at y+ ≈ 50 the viscous shear stress is about 10% of
the total, see Figure 2.3(b)). More in detail, four regions are identified by moving
upwards from the wall (see Figure 2.3(a)):

• very close to the wall, for y+ . 5, the viscous stress is much more significant
than the Reynolds shear stress (see Figure 2.3(b)), so that dU+/dy+ ≈ 1
and, as a result, U+ = y+. The region for y+ . 5 is then referred as viscous
sub-layer ;
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Figure 2.3: (a) Mean velocity profile, U+(y+), for a numerically simulated channel
flow at Reτ = 950 (see Appendix B.5). (b) Wall-normal behaviour of the Reynolds
shear stress, ⟨u′v′⟩/u2

τ , and the mean velocity gradient, dU+/dy+. The limits of
the highlighted regions are reported in the main text.

• at higher distances from the wall, the viscous stress decreases while the (tur-
bulent) Reynolds shear stress increases (see Figure 2.3(b)): the dependence of
U+(y+) on viscosity is then negligible and the mean velocity follows a log-law
profile:

U+ = 1
κ

ln y+ + B, (2.3)

where κ ≈ 0.41 is the von Kármán constant, and B is a constant that depends
on wall roughness (for smooth walls, B ≈ 5.2) [1, 4]. The log-law holds in the
log-law region, which conventionally ranges from y+ & 30 up to y/H = 0.3;

• in between the viscous sub-layer and the log-law region, the mean velocity pro-
file joins up the relations U+ = y+ and U+ = ln y+/κ+B (see Figure 2.3(a)).
This intermediate region in the range 5 < y+ < 30 is called buffer layer and
the Reynolds shear stress and viscous stress are of comparable intensity in
this layer (see Figure 2.3(b)). It is important to underline that the maximum
of the production of turbulence kinetic energy, −⟨u′v′⟩dU/dy, is found in the
buffer layer; specifically, the y+ location of maximum production corresponds
to the y+ value in which −⟨u′v′⟩ = dU/dy, that is at about y+ ≈ 12 [4];

• for y+ > 0.3, the flow behaviour depends on the outer-flow parameters as well
as the geometry, and such region is referred as wake or core region [14].
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In the inner layer (i.e., for y/H ≪ 1), the behaviour of the mean velocity can
be reduced to an expression U+ = fw(y+) that is universal (it does not depend
on the flow setup) and that is referred as the law of the wall [4]. Specifically, in
the viscous sub-layer, fw(y+) = y+ while in the log-law region fw(y+) is given
by Eq. (2.2). On the contrary, in the outer layer, the mean velocity follows the
so called velocity defect law, that is (U+

c − U+) = fH(y/H), because U+ depends
on y/H as the effect of viscosity is negligible. As shown in Figure 2.3(a) for a
channel flow, for y/H > 0.3 (i.e., y+/Reτ > 0.3), the velocity defect law follows
quite closely a logarithmic behaviour as in the log-law region. However, it should
be emphasized that the arguments used for obtaining the Eq. (2.2) are not valid
for y/H > 0.3. Additionally, while the function fw is universal, the function fH

depends on the flow. For instance, the deviation from a logarithmic law of fH are
much more substantial for a turbulent boundary layer than in a channel flow [4].
Finally, since the limit of inner layer in terms of y+ depends on the Reynolds
number, it follows that (for high Reynolds numbers) there is an overlap region
(also called inertial sublayer), 50 < y+ < 0.1Reτ , between the inner and the outer
layer [1]. The presence of the overlap region (see Figure 2.3(b)) implies that the
considerations for both the inner and outer layer are valid. In the overlap region,
therefore, the mean velocity profile is commonly supposed to follow a logarithmic
law of the form

U+ = 1
κ

ln
(︃

y

H

)︃
+ B′, (2.4)

where B′ is a constant depending on the flow and (if present) on wall-roughness [4,
15]. However, the behaviour of the mean velocity in the overlap region is still
debated, as it will be discussed in Section 2.3.1.

Although the wall-normal structure of wall turbulence is basically associated
with the behaviour of the mean velocity and shear stress, the statistics for velocity
fluctuations are also reported. Indeed, velocity fluctuations account for the kinetic
energy of turbulence, so that their behaviour is essential for the wall-normal char-
acterization of turbulence. Figure 2.4 shows the profiles of the Reynolds stresses,
⟨u′2⟩, ⟨v′2⟩ and ⟨w′2⟩, as a function of y+. ⟨u′2⟩ and ⟨w′2⟩ increase quite rapidly from
the wall (where all velocity are zero) reaching a peak within the viscous wall region,
y+ < 50 (see Figure 2.4(a)). On the other hand, ⟨v′2⟩ increases rather slowly from
the wall, which "constrains" the vertical motion of the fluid. It should be empha-
sized that the value of the peak of ⟨u′2⟩ increases with the Reynolds number for
channel and boundary layer flows, as it increases the influence of (outer) large scales
on the near wall region [16]. For high values of y+, instead, the Reynolds stresses
approach the same value as the anisotropy of the flow is less severe away from the
wall. However, the intensity of the streamwise fluctuations, ⟨u′2⟩, is much higher
than the other two components, especially close to the wall. Furthermore, as shown
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Figure 2.4: Profiles of the Reynolds stresses as a function of the wall-normal co-
ordinate, y+, normalized (a) in wall-units and (b) by the turbulent kinetic energy,
K. The insets show the zoomed profiles for y+ ≤ 50. Data are from a numerically
simulated channel flow at Reτ = 950.

in Figure 2.4(b), the streamwise velocity component accounts for most of the tur-
bulent kinetic energy at all y+. This makes the (mean and fluctuating) streamwise
velocity component a fundamental variable in the wall turbulence characterization.

2.3 Achievements and challenges: an overview
The intrinsic complexity of turbulence has challenged the researchers to find out

footprints of universality as well as the presence of coherence in such a complicated
motion. In order to disentangle turbulence complexities, hence, the statistical ap-
proach has necessarily arisen, mainly for two reasons. First, the combination of
non-linearity and acute sensitivity to perturbations in the initial and boundary
conditions, make turbulent flows unpredictable in details. This has induced the
scientific community to look at the turbulence from a probabilistic view. In fact,
although the details of any turbulence realization are unique in practice, the statis-
tical properties of turbulent flows under (almost) the same conditions are observed
to persist [2]. Second, even when detailed information is available, any observed
phenomenon concerning turbulence has to occur often enough, namely it has to be
relevant for the turbulence dynamics from a statistical viewpoint [12].

Historically, the Reynolds decomposition of physical quantities in a time-averaged
and a fluctuating component has provided a first notable achievement for the sta-
tistical analysis of turbulence [17]. Besides, the seminal papers of Taylor on particle
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dispersion [18, 19] as well as the works of Kolmogorov on the characterization of tur-
bulence at different scales [20, 21], have further contributed to develop a statistical
theory of turbulence. These works (first by Reynolds, and later by Taylor and Kol-
mogorov) have provided in the last century a grounded framework for fundamental
developments on turbulence in a very wide range of applications. For example, the
Reynolds approach to Navier-Stokes equations (see Eq. (B.1) and (B.2)) – namely
the Reynolds-average Navier-Stokes simulation (RANS) – has revealed to be a pow-
erful tool for practical investigations. Nowadays, it is widely employed in compu-
tational fluid dynamics of engineering applications, as the RANS approach is able
to capture essential (average) features of turbulence with reasonable computational
costs [22].

The statistical approach to turbulence has gone side by side to the techno-
logical developments on flow simulation and experimental measurements. The
former-developed single-point measurement techniques – e.g., Hot-Wire Anemome-
try (HWA) or Laser Doppler Velocimetry (LDV) – have strongly required a statisti-
cal view of turbulence. In fact, while numerical simulations and multi-dimensional
experimental tools provide simultaneous information on the flow, single-point mea-
surements performed at different locations are reasonably meaningful only from a
statistical view since the simultaneousness is lost [12]. On the other hand, struc-
tural information about turbulence (i.e., two- and three-dimensional flow features
such as visualizations of coherent structures) has been established only after the
developments of direct numerical simulations (DNS) and experimental tools as par-
ticle image velocimetry (PIV) [12, 23]. For example, structural information about
the region very close to the wall in a turbulent boundary layer and in a pipe flow
was only given experimentally in 1960s by Kline et al. [24] and Corino and Brod-
key [25], respectively. In particular, the visualizations of near-wall streaks in a
turbulent boundary layer (see Ref. [24]) has considerably advanced the possibility
to understand the mechanisms of wall-turbulence. For numerical simulations, ac-
curate DNSs were mainly developed in the 1970s for homogeneous turbulence [26]
and in the late 1980s for inhomogeneous flows [27], thanks to the increased com-
puting availability. Nowadays, by exploiting the exponential boost of computa-
tional power, great efforts have been paid to the development of state-of-the-art
techniques, such as machine learning and network science. For instance, machine
learning has started to make an impact on turbulence modelling and analysis, thus
providing an example of multidisciplinary approach to turbulence research (e.g.,
see Ref.s [28–30]).

From the picture outlined so far, it clearly emerges that novel theoretical and
practical approaches are continuously required to shed light on the complex dynam-
ics of turbulence. This topic was raised in the enlightening discussion "Challenges
in Turbulence in the Twenty-First Century–What Problems Should We Focus on
in the Next 20 Years?" [31], in which several authors indicate that turbulence re-
search would get benefits by inheriting insights from other disciplines. Therefore,
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by relying on state-of-the-art technologies, both novel experimental and numerical
techniques are necessary to advance the level of information on turbulent flows. In
this work, we focuses on the analysis of wall-bounded turbulence via complex net-
works, with emphasis on fully-developed turbulent channel flows and zero-pressure
gradient turbulent boundary layers. In particular, the two typical points of view –
namely the statistics scaling and the coherent structure characterization – are con-
sidered. The importance of scaling is related to the possibility to extract universal
features of turbulent flows, with practical implications on flow predicative capa-
bility; on the other hand, the structural view (which is inter-related to scaling) is
based on the possibility to describe the complex turbulent dynamics in terms of or-
ganized motion [14, 32]. We also highlight the effect of turbulence on the dispersion
of a passive scalar, with emphasis on the role of the wall-induced inhomogeneity.

2.3.1 Wall-bounded flows: coherent structures and scaling
Statistical analyses of wall turbulence have mainly been focused on two in-

terrelated topics: scaling and structures. While the former refers to the scaling
exponents of typically investigated statistics (e.g., profiles of mean and fluctuating
velocity, spectra, correlation and structure functions), the latter indicates the char-
acterization of organized motions [33]. For both themes, a crucial role is played by
the Reynolds number. In fact, as mentioned in Section 2.1, the higher the Reynold
number the wider the range of turbulent scales. This affects the scaling properties
(as statistics might change or not directly scale with the Reynolds number) and
the features of coherent structures (as at higher Reynolds numbers larger structures
appear, interacting with smaller ones). It should be noted that the presence of wall-
roughness can affect turbulence features even far from the wall. In fact, the presence
of small roughness elements barely influences the mean velocity profile except in
the near wall region; however, roughness considerably affects the Reynolds shear
stress, as well as the geometrical features of large scale coherent structures [34].

Statistics scaling

From the scaling perspective, one of the most debated issues in wall-turbulence
concerns the asymptotic behaviour at high Reynolds numbers of the mean velocity
profile, as well as high-order statistics (e.g., Reynolds stresses) [11, 14, 35]. The
mean velocity profile (in wall-units) depends on two coefficients (see Eq. (2.2)): one
related to wall roughness and setup geometry (e.g., channels or boundary layers),
while the other is the von Kármán constant. The values of both these coefficients (in
particular of the von Kármán constant) are still debated as only recently informa-
tion from high Reynolds number turbulence are acquired to provide accurate esti-
mations [33]. The importance of accurately evaluating such coefficients is related to
the appearance of their values in turbulence models (such as the Spalart-Allmaras
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or for RANS), thus affecting practical applications, e.g. for drag reduction [16].
This issue is very important for turbulent boundary layers, as the wall friction is
more difficult to measure with high accuracy than for channel flows (where friction
is estimated from the streamwise pressure gradient) [4].
Furthermore, it is traditionally assumed that the mean velocity in the overlap re-
gion follows a logarithmic profile as a function of the distance from the wall. Based
on experiments and numerical simulations at high Reynolds numbers, other scaling
theories have been proposed, as a power-law scaling of the mean velocity instead of a
log-law scaling, with serious implications for turbulence modelling [16, 33, 36]. Very
recently, however, it has been reported that physical constraints impose a universal
log-law structure [35, 37], and universal agreement for different geometries emerges
as well [38]. To get more insights into the wall-normal scaling, the streamwise veloc-
ity fluctuation, ⟨u′2⟩, has also been considered. According to the Townsend-Perry
model of self-similar wall-attached eddies, ⟨u′2⟩ is expected to follow a logarithmic
profile in the same region in which U is expected to be logarithmic [16]. Therefore,
the behaviours of mean and fluctuating streamwise velocity are used as a diagnostic
for log-law scaling in wall turbulence.

Another recent issue about scaling at high Reynolds numbers concerns the ap-
pearance of a peak in pre-multiplied spectrum of the streamwise velocity at low
wavenumbers. This peak has been associated with the presence of very large scale
motions (VLSMs) – also referred as superstructures – in the flow [12, 16, 33, 36].
VLSMs are organized structures with characteristic size of the order of ten times
the characteristic scale in the flow (e.g., the boundary layer thickness or the channel
height) and carrying large fractions of turbulence energy [36].

Coherent structures

Very large scale motions represent a remarkable example of coupling between
scaling theories and coherent structures, as the behaviour of the statistics (e.g., pre-
multiplied spectra) are directly related to the presence of organized (structural)
motion in the flow. Coherent structures are very important as they provide a
simplification of the description of the turbulence dynamics and are fundamental
for turbulence control strategies [32]. Accordingly, several techniques have been
employed to extract such coherent behaviour. It is worth to note that coherent
structures have to possess both spatial and temporal coherence, namely they have
to persist for enough long time [39].

In wall turbulence, the characterization of coherent structures depends on the
wall-normal distance. In the near wall region, the important structures are streaks
and quasi-streamwise vortices (or rolls) [12, 32]. Streaks are streamwise-elongated
structures of negative streamwise velocity fluctuations (see Figure 2.5), with an
average spanwise separation of z+ ∼ 100 and size x+ ∼ 103 − 104 and z+ ≈ 50
in the spanwise and streamwise direction, respectively [12]. Low-speed streaks
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Figure 2.5: Streamwise velocity fluctuation in a wall-parallel plane at y+ ≈ 10.
DNS data are extracted from the Johns Hopkins Turbulence Database (JHTDB)
at Reτ = 1000 (see Appendix B.2), and the full simulation box is displayed in the
streamwise and spanwise direction [40].

are alternated by high-speed fluid (for maintaining continuity) and their spacing
remains remarkably constant at different Reynolds numbers [16]. Low-speed streaks
display a peculiar behaviour known as bursting. As streaks move downstream they
tend to slowly tilt from the wall, then they rapidly move upwards to finally break
into fine-scale motion [4]. Such upward motion from the wall is usually referred
as ejection. In order to maintain the fluid continuity, ejections are paired with
sweeps, that is high speed fluid moving downward to the wall. These motions
can be effectively characterized, e.g., via quadrant analysis [12, 41, 42] so that
ejections belong to the second quadrant (Q2 events) while sweeps belong to the
fourth quadrant (Q4 events).
On the other hand, quasi-streamwise vortices are pairs of counter-rotating rolls
slightly inclined away from the wall, which sustain and lay in between near-wall
velocity-streaks [4, 12]. Quasi-streamwise vortices have a width comparable with
that of streaks, but they are less elongated and are responsible for the wall-normal
velocity fluctuations in the buffer layer [32]. Furthermore, the presence of quasi-
streamwise vortices has been associated with streak bursting [4]. Therefore, since
streamwise vortices generated by streaks instability (bursting) tend to reinforce the
streak formation, this process lead to a self-sustaining cycle [32]. In order to identify
such vortical structures and strong shear events, several threshold-based techniques
have been employed. In the former case, different methods have been proposed for
vortex identification based on the properties of the velocity gradient tensor [43],
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while in the latter case variable-interval time (or space) averages (referred to as
VITA or VISA, respectively) have been proposed [42].

At higher distances from the wall, in the logarithmic region, streaks are still
present but they are much larger and longer than in proximity of the wall [12]. It is
worth noting that the physical domain in numerical simulations must be sufficiently
large in order to let large structures develop, especially at high Reynolds numbers;
a small domain, indeed, could constrain the spatial developments of large coherent
structures [12]. The principal vortical structures out from the wall are represented
by hairpin vortices [39]. These structures are mostly observed in the logarithmic
layer as a result of an upwards lifting up of quasi-streamwise vortices, and their size
is found to grow with the distance from the wall [14]. It has also been observed that
single hairpin vortices tend to cluster in packets, which contribute to the transport of
vorticity, momentum, and kinetic energy from the wall [39]. Such packets of vortices
form the so called large scale motions (LSM), that are observed to extend up to
distances of the order of the typical domain size (e.g., boundary layer thickness).
As mentioned above, at larger distances from the wall, bigger structures appear
as very-large-scale motions whose origin and characterization are still debated [16].
For instance, an open issue remains on the relationship between VLSMs and LSM,
as both are associated with large fractions of turbulent kinetic energy [39].

The presence of coherent structures are well captured by correlation functions
and spectra. Specifically in wall-bounded turbulence, correlation-based velocity
structures are elongated in the streamwise direction and shorter along the transver-
sal directions [44]. Concerning spectra, the energetic contributions due to streaks
and (as recently highlighted) due to LSMs and VLSMs are identified as inner and
outer peaks in the pre-multiplied spectra of the velocity field [16]. However, it
should be noted that the Fourier analysis can only be employed along homogeneous
directions and does not take into account location. On the contrary, fixed-point
analyses have the advantage of being localized in space but they have no size [32].
An issue that has recently raised attention (thanks to the detection of an outer
peak in the pre-multiplied spectra at high Reynolds numbers) is the influence of
large- and very-large-scale motions on the near-wall region via a outer-inner inter-
action [16]. In particular, it has been found that the outer large scales modulate the
small-scale behaviour in the near-wall region, namely small- and large-scale fluid
motions are coupled (e.g., see Ref.s [45–47] and references therein).

For sake of completeness, we mention other two tools that have been successfully
employed for coherent motion characterization, namely proper orthogonal decom-
position (POD) [48] and linear stochastic estimation (e.g., see Ref. [49]), whose
details are beyond the scope of this work.

Finally, it should be pointed out that, as outlined so far, instantaneous flow fields
are usually exploited to investigated coherent structures, and statistical measures
are obtained a posteriori. In Ref. [50], instead, the authors propose a new concept
of statistical coherent structure, in which the definition of coherent structure is
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directly related to statistical measures rather than an instantaneous field (this view
is shared in our work, see Chapter 6).

2.3.2 Turbulent dispersion of passive scalars
In the previous sections, some general insights and open issues on the character-

ization of wall-turbulence were reported. In this section, we focus on a particular
topic that is the dispersion (i.e., mixing and advection) of a passive scalar in a wall-
bounded turbulent flow. Turbulent mixing, in fact, is a fundamental issue in many
applications from atmospheric and geophysical phenomena, chemical reactions and
combustion mechanisms to biophysics [8, 51].
In this work, in particular, we consider two issues: (i) the dispersion of passive
scalar through a Lagrangian framework, in which a set of fluid particles is tracked
in a numerically simulated (DNS) turbulent channel flow (see results in Chap-
ter 7); (ii) the dispersion of a passive scalar plume emitted from a point source in
an experimentally generated turbulent boundary layer (see results in Chapter 5,
Section 5.4). Therefore, this section deals with these two issues, by highlighting
the main contributions related to such topics.

Dispersion from a Lagrangian viewpoint

Following the seminal papers of Taylor [18, 19] and Richardson [52], the La-
grangian viewpoint on turbulent dispersion has progressively acquired great rel-
evance, as the Lagrangian framework naturally emerges in problems – including
modelling – related to (turbulent) transport [53, 54]. Most of the advances in the
topic, however, have been carried out in the last few decades, as a consequence of
the increased performance in computational and experimental technologies. With
respect to the Eulerian viewpoint, indeed, Lagrangian measurements in experiments
are more challenging as they requires the intrusion of external particles, which have
to be properly tracked with sufficient resolution both in space and time [55].

With the aim of characterising turbulence from a Lagrangian perspective, statis-
tics have been computed in terms of Lagrangian autocorrelations (of velocity and
acceleration fields), probability density function (PDF), lower- and higher-order
moments, structure functions, as well as one- and multi-particle dispersion statis-
tics [7, 51, 55, 56]. In particular, the importance of particle relative dispersion is due
to its relation with mixing and dissipation of the scalar fluctuations, with obvious
implications on practical applications [7, 56]. In order to extend the more common
two-particle dispersion, the geometrical features of clusters made up of three or
four particles have been investigated [57–60], as well as particle-puffs [61]. In fact,
Lagrangian statistics of higher-order moments requires that groups of particles are
simultaneously tracked [60]. Different from particle pairs, multi-particle dispersion
can lead to complex shapes as an effect of turbulence. Accordingly, multi-particle
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geometrical features have been usually analysed in terms of volume and size change,
where the latter one is typically characterized by the inspection of the moment of
inertia of the multi-particle shapes. In particular, studies on isotropic and convec-
tive turbulence [57–61] reveal that for long times multi-particle shapes tend to be
strongly distorted, specifically by developing into elongated shapes.

However, most of the studies involving passive scalars have focused on ho-
mogeneous isotropic turbulence with few applications on relative dispersion on
anisotropic and inhomogeneous turbulence [62]. Although turbulence significantly
enhances dispersion with respect to molecular diffusion [52], the presence of a mean
shear makes the relative dispersion even more complex, by further enhancing the
relative separation between particles (especially in the streamwise direction). In
fact, while in homogeneous isotropic turbulence statistics depend only on the value
of the initial distance between particles, in wall-turbulence statistics depend also
on the wall-normal distance and on the direction of initial particle separation [62].

For a turbulent channel flow, there are few works dealing with Lagrangian dis-
persion of particles. The first numerical studies on Lagrangian statistics were car-
ried out between 1970 and 1990s as a consequence of the availability of numerically
extracted data [63]. These investigations were characterized by low Reynolds num-
bers as well as a relatively low number of particles. More recently, Lagrangian
statistics have been acquired at higher Reynolds numbers, also by considering the
effects of particle inertia [62, 64–66]. More in detail, in Pitton et al. [64], particle
separation is investigated in a DNS at Reτ = 150 for fluid and inertial particles.
The authors have found that by removing the effect of the mean shear on particle
dynamics, the pairwise separation is much more prevalent in the streamwise di-
rection rather than the wall-normal and spanwise directions. A turbulent channel
flow at a higher Re value has been investigated by Kuerten and Brouwers [65] in
which Lagrangian velocity autocorrelations at Reτ = 950 were investigated. More-
over, Stelzenmuller et al. [66] and Polanco et al. [62] investigated channel flows at
Reτ = 1440 via acceleration statistics and (forward and backward) relative disper-
sion of particle pairs, respectively. In particular, in Ref.s [62, 65] the authors also
propose models for the statistics scaling, which are accurate only away from the
near wall region.
To conclude, it is worthwhile to mention that similar analyses have also been car-
ried out for other canonical turbulent flows (that are not the object of this work),
namely pipe and boundary layer flows (see Ref. [63] for an overview).

Dispersion of passive scalar plumes

Among different configurations that can be explored for the dispersion of pollu-
tants in the atmospheric (turbulent) boundary layer, a typical issue is represented
by the release from a point source. This issue, indeed, is related to the dispersion
of pollutants, contaminants or toxic substances, with significant environmental and
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health impact.
Information on the statistics of the substance concentration is required for char-

acterization and modelling of the dispersion in the atmospheric boundary layer,
especially in urban areas. As a result, different strategies have been adopted to
investigate the relation between one-point probability density functions (PDFs) of
the pollutant concentration and the turbulence dynamics, under different release
conditions. With the aim to characterize the concentration PDF, the relation be-
tween mean and standard deviation as well as a functional dependency between
the third- and fourth-order moments have been investigated by Chatwin and Sul-
livan [67] and Mole and Clarke [68], respectively. The shape of the concentration
PDF has also been investigated; good agreement is found by modelling the PDFs
by means of a Gamma function (e.g., see Ref.s [69, 70]). In general, the typical
modelling approaches of concentration PDF involve Lagrangian stochastic models,
plume meandering models, micro-mixing models, as well as models based on nu-
merical computation (e.g., large-eddy-simulation) [71]. In particular, meandering
models [72–75] are the most simple and rely on the conceptual framework described
by Gifford [76], in which the dynamics of a plume emitted by a point source is
mainly governed by a meandering motion and a relative dispersion of the plume.
The meandering is an irregularly oscillating motion of the instantaneous center of
mass of the plume; it is due to the effects on the plume dynamics of turbulent
length scales larger than the plume size. On the other hand, the relative dispersion
refers to the spreading of the plume with respect to its center of mass.

The reliability of these models need to be experimentally verified by means
of both concentration and velocity measurements. For a point-source release, the
work by Fackrell and Robins [77] represented a reference point for several successive
studies during the last decades. The authors investigated the effect of the height
and size of the source on the concentration (lower-order) statistics in a rough-
wall setup. They found that, for an elevated source, plumes emitted by a smaller
source size display a stronger meandering motion with respect to plumes emitted
by a larger source size. On the other hand, for a ground-level source, the plume
dynamics is slightly affected by the source size. Nironi et al. [71] successively
conducted wind-tunnel experiments by evaluating both lower- and higher-order
statistics, thus extending the work by Fackrell and Robins. The authors found that
small variations of the source size significantly affect the role of meandering in the
plume dispersion, by inducing variations in the (one-point) concentration statistics
up to streamwise distances of the order of a hundred times the source size [71,
77]. In particular, while the mean concentration profiles are slightly affected by the
source size, the second- and higher-order moments are significantly affected by the
emission conditions especially in the proximity of the source [71].

Concerning smooth-wall boundary-layers, only recently Talluru et al. [78] in-
vestigated the role of streamwise velocity structures on transport of passive scalar
plumes, by focusing on the effect of the elevation of the emitting source with fixed
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size. For concentration statistics, they found results in accordance with those by
Fackrell and Robins [77] and Nironi et al. [71]; furthermore, they provided statis-
tics of longitudinal turbulent flux which are summarized into a proposed physical
model [78]. The same authors have also investigated the scaling of concentra-
tion spectra measured at different spatial locations, by founding that a self-similar
behaviour emerges if concentration spectra are normalized by concentration vari-
ance [79].

In this work, we address the same issue studied by Fackrell and Robins [77]
and Nironi et al. [71] in a rough-wall turbulent boundary layer, by investigating
concentration and vertical turbulent transport time-series via classical statistics
and complex network metrics (see results in Section 5).
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Chapter 3

Complex networks: a novel
perspective on complex systems

“Develop your senses, especially
learn how to see.
Realize that everything connects to
everything else.”

Leonardo da Vinci

This Chapter aims to introduce complex networks, by highlighting the historical
context in which network science has arisen, the main applications, as well as
the mathematical formalism behind network analysis. The Chapter is organized
as follows. In Section 3.1, an introduction on complex networks is provided, by
focusing on the principal findings that have led to the establishment of network
science, and the main difference between a sociology-based and a physics-based
network analysis. Section 3.2 comprises a brief summary of the main applications
and research fields that have mostly taken advantage from complex networks in
last two decades. Finally, complex networks are formally described in Section 3.3.
In particular, Section 3.3.1 includes the main definitions, as well as the different
way in which a network can be constructed. Quantitative measures are described
in Section 3.3.2, by focusing on the set of metrics that have been exploited in this
work for network-based analysis of turbulent flows.

3.1 Introduction
Connections are the basis of human activity in almost every context and stage

of life. As basic examples, we connect with each other by talking, writing mails,
sending messages or through an handshake. Any financial transaction, social collab-
oration, degree of kinship, sporting event are based on inter-connections. Basically,

23



3 – Complex networks: a novel perspective on complex systems

we live in an world in which everything connects to everything else. Networks arise,
therefore, in order to geometrically represent the elements of a (discrete) system
and to study the way they mutual inter-connect. However, complexity is not a
characteristic of any network, but it typically emerges as real-world systems are
analysed. Therefore, complex networks have been usually defined as graphs that
show non-trivial (topological or structural) features, and that arise from real-world
complex systems.

Historically, social networks were one of the first network applications, devel-
oped in 1920s with the aim to understand how individuals connect with each other
and what implications such relationships have in the society [80]. It has only been
at the end of 1990s that network analysis has started to deeply involve other dis-
ciplines. The seminal papers of Watts and Strogatz [81] in 1998 and Barabási and
Albert [82] in 1999 represented the first efforts to highlight the non-trivial texture
of interconnections in physical complex systems, showing that real systems tend to
display a complex structure of interconnections that deeply deviate from a random
or a regular configuration. Since then, complex network analysis has increasingly
attracted the attention of scholars from disciplines different from sociology, such as
physics and biology. Nevertheless, there are substantial differences in the way net-
work analysis is carried out between the classical sociology-based approach and the
novel physics-based one. While social network studies are theory-driven (i.e., theory
→ hypotheses → network generation → network analysis), while physical network
studies are data-driven (i.e., data → emergence of patterns in network analysis →
post-hoc hypotheses or model for pattern) [83]. Figure 3.1 shows a sketch of the
processes involved in the network analysis of real-world complex systems.

In last two decades, three key concepts have driven complex network research:
(i) the small-world effect, (ii) the scale-free networks and the idea of centrality,
and (iii) the occurrence of communities. The small-world phenomenon was firstly
expressed as the result of a social experiment resulting in the statement that any
two people can be reached with each other in at most six intermediate ‘friend of
a friend’ connections. However, Watts and Strogatz (unexpectedly) found that
also many other real systems display the small world effect [81]. This implies that,
in many situations, real systems display stronger interconnected structures than
expected.

A second, crucial, idea in complex network analysis is centrality, that is the
identification of the most important elements in a network [84]. For instance, in a
network in which connections are represented by flight routes between airports, the
most central airports could be those with the largest number of departures per day,
as well as those with a low number of departures but in a strategic geographical
position for intercontinental flights. Barabási and Albert found out that many real-
world complex systems display a power-law probability distribution (i.e., scale-free)
for the number of connections in the networks [82]. This suggested the presence
of hubs in the networks, namely elements of the systems much more central than
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Figure 3.1: Block-diagram showing the typical processes involved in the construc-
tion of a physics-based network. The diagram highlights the closed-loop structure
of the process, so that measures have to be interpreted in physical terms to extract
physical insights.

the remaining elements. Moreover, scale-free networks can emerge as a result of
preferential attachment mechanism, namely a new element will prefer to attach to
an existing element of the network that is well connected (i.e., the hub) [82].

Third, the idea of community structure in complex networks has important
practical developments. A community is a sub-group (or cluster) of entities that
are strongly connected with each other and poorly connected with the rest of the
network [85]. As for coherent structures in turbulent flows (see Section 2.3), com-
munities are the manifestation of a self-organization in the system. The tendency
to form well-connected sub-structures has a fundamental impact on the modelling
and understanding of several processes.

To summarize, thanks to the natural suitability of networks to virtually rep-
resent any discrete system – and following the developments of the key ideas of
small-world, centrality and community – the last two decades have witnessed a
rapid establishment of a cutting-edge approach to research: network science.

3.2 Network science: an escalation of applica-
tions

The versatility of complex networks in representing discrete systems, in conjunc-
tion with the advances in computational capabilities, has led to an extremely rapid
development of tools for network analysis in a large variety of applications. The
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Figure 3.2: Cumulative number of documents from 1960 to 2018 containing the
keywords “complex network OR network analysis” (blue line) and “turbulence OR
turbulent flows” (red line), as indexed by SCOPUS database.

data-based approach of physical networks has taken great advantage from the enor-
mous production of information and details on real-world systems. To grasp the
concept of the huge impact of network science, Figure 3.2 shows a comparison of the
(cumulative) number of documents indexed by SCOPUS containing the keywords
“complex network” or “turbulence”. The number of documents from 1960 to 1990
involved in turbulence is more than six times the number of documents involved
in network analysis in the same period. However, the ratio between the number of
documents containing keywords “turbulence” or “complex network” from 1960 to
2018 is just 1.15.

Despite the large variety of applications of complex networks to model real-world
data, in the last two decades, some research fields have taken more advantage than
other from the powerful tools of network science. In the following, a brief survey
of the main network-based applications is reported (for details, see Ref. [87]).

• Biological Networks. An active area of research in network science is repre-
sented by biological networks, which comprises biomolecular analysis, general
medicine and neuroscience. Biological processes in living organisms have been
investigated via protein-protein interaction networks, metabolic networks and
genetic networks. In medicine, network analysis has been exploited for the
understanding of diseases and their spreading (e.g., see Figure 3.3), while in
neuroscience complex network analyses have been carried out to study brain
functions and diseases as well as the effects of environmental factors on the
brain formation and evolution.
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Figure 3.3: Example of humane disease network, where nodes are diseases and
links are active if they share one or several disease-associated genes. Node colours
indicate the disease class, while node size indicates the number of genes associated
with the corresponding disease [86].

• Social and Economic Networks. In the last decades, several research
fields in social activities – e.g., sport activities, political elections and scientific
collaborations – have taken advantage of the network-based approach (e.g.,
see Figure 3.4). For instance, networks based on scientific collaborations
have revealed that the most productive authors are those involved in a great
variety of interests. Furthermore, in the context of social networks, the idea
of epidemic spreading plays an important role. For example, if an epidemic
threshold does not emerge in a social network (i.e. diseases spread regardless
of the infection rate), a disease can easily propagate to all nodes of the network
with several health implications.
Economic studies usually concern (among others) the analysis of trades, cur-
rency, wealth distribution and tourism. Since economic systems are made up
of interacting agents that aim to improve (local or global) economy, complex
networks have represented a suitable tool to investigate economic relations.
A key point in economy-related networks is the large data availability, espe-
cially financial data that have been collected along several years with high
accuracy.
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Figure 3.4: Network based on Twitter sharing of the hashtag #SB277 concerning
California vaccination law. Nodes are Twitter accounts while links between them
show retweeting of hashtagged posts. Larger node size indicates a higher retweet
activity. Red nodes are likely bots while blue ones are likely humans [88].

Figure 3.5: Example of airport transportation network, where nodes correspond to
airport locations. Colours indicate different geographical areas. [89]

• Engineering and Physical Networks. Many phenomena in different ar-
eas of engineering and physics can be modelled and investigated through
networks. In engineering, transportation systems (e.g., airports and urban
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streets) and electric power systems have particularly benefited from network
analysis. In the case of airport transportation (e.g., see Figure 3.5), net-
works provided results for efficient resource allocation as well as for attack
vulnerability. Road networks has been studied with the aim to improve ac-
cessibility, that is the possibility to easily travel inside cities. Electric power
systems have also been studied due to their complexity, as they comprise
several transmission lines, substations and generators.
Computer science and the internet (e.g., the World Wide Web) are further
examples of research fields involved in network science. In fact, due to their
intrinsic web-like structure, data-sharing systems and software architectures
have taken great advantage from the network formalism.
Among other physical systems such as particle physics or chemistry, Earth
sciences have largely benefited from the complex network approach. Specif-
ically, climate networks represent an active field of research mostly focused
on global changes in climate dynamics. For instance, complex networks have
been constructed to investigate El Niño and La Niña events, namely strong
growths and decreases in the sea surface temperatures in the central and
east-central equatorial Pacific Ocean. More details on climate networks are
included in Section 4.3.

• Other Networks: Linguistics and Ecology. Finally, it is worth to men-
tion other two applications of complex networks that have important practical
implications: linguistic networks and ecology-related networks. In the former
case, linguistic networks can promote the study of co-evolution between lan-
guages as well as the implementation of user-friendly reliable technologies as
search engines and machine translators. In ecology, relationships like compe-
tition, parasitism and predator-prey have been investigated with the aim to
understand how different species interact with each other, with implications
on food-webs.

Among the plethora of applications of complex networks, fluid flows have been
also recently investigated via network-based approaches. However, due to the im-
portance related to the present work, the network analysis of fluid flows (especially
turbulence) is detailed in the next Chapter 4.

3.3 Definitions and measurements
In this section, formal definitions of a network and the metrics investigated in

the present work are reported. Some of the concepts described are typically used
in network theory, while some others are here introduced ad hoc to better highlight
some features of turbulent flows. For a comprehensive review of definitions and
measurements, see Ref.s [80, 83–85].
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3.3.1 Network formulation
A network is defined as a graph G = (Nv, Ne), made up of a set of Nv labelled

nodes (or vertices) and a set of Ne links (or edges). The structure created by node
interactions is called the network topology.

According to the way links are defined, networks can be classified in four cat-
egories [85]: (i) weighted networks, if a (scalar) real value is assigned to each link,
thus quantifying the link intensity; (ii) unweighted networks, if link intensity is not
taken into account, i.e. links are just present or absent; (iii) directed networks, if
a link points from a node (source) to another node (target); (iv) undirected net-
works, if link direction is not taken into account (source and target nodes coincide).
In this work, network analysis is only limited to undirected networks. Figure 3.6
shows a sketch of a network in which different structural features are highlighted.
Specifically, nodes (depicted as coloured dots) can represent time instants, spa-
tial locations or Lagrangian particles in case of time-series, Eulerian or Lagrangian
analysis, respectively (see Chapter 4). In order to represent the node-node inter-
connections, the adjacency matrix is defined as

Ai,j =
{︄

1, if nodes {i, j} are linked, with i /= j
0, otherwise , (3.1)

where i, j = 1, ..., Nv indicate network nodes. Therefore, the entries Ai,j take into
account the presence, Ai,j = 1, or absence, Ai,j = 0, of a link between each pair of
nodes {i, j}. Accordingly, if Ai,j = 1, the nodes {i, j} are said to be adjacent. The
set of nodes directly connected to a generic node i is called the first neighbourhood,
Γ1(i), of i and the nodes belonging to Γ1(i) are called first neighbours of i (e.g., see
Figure 3.6). In other words, if Ai,j = 1 the node j is in the first neighbourhood of the
node i, and vice versa. In general, a set of nodes constitutes the n-th neighbourhood,
Γn(i), of a node i if the minimum number of different links connecting i and Γn(i) is
equal to n, with n ≥ 0 and, by definition, Γ0(i) = i [90]. For instance, the first four
neighbourhoods of node i = 1 are highlighted in Figure 3.6. The n-th cumulative
neighbourhood, Γn

c (i), of a node i is the union of its first n neighbourhoods (including
i) [90]. In the example of Figure 3.6, the value of n so that Γn

c (1) comprises all
nodes in the network is n = 4, as the whole set of nodes is given by the union of
the first four neighbourhoods of i = 1.

To take into account link intensities, the weight matrix, Wi,j, is used in place
of the adjacency matrix, where entries Wi,j ∈ R. Either the adjacency or weight
matrix corresponds to a mathematical representation of the network. Since only
undirected networks are considered in this work, the adjacency/weight matrices are
symmetrical (i.e., Ai,j = Aji or Wi,j = Wji). It should be noted that an adjacency
(binary) matrix can be obtained by applying a threshold-operation to a weight
matrix.

Although weights are usually assigned to links to quantify the intensity of an
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Figure 3.6: Sketch of a network (left) and some related metrics (right). A node i
(depicted in black) and its first four neighbourhoods (depicted as red, green, blue
and magenta dots, respectively) are shown. An example of shortest path between
nodes i = 1 and j = 9 is illustrated as orange lines, while an example of triple and
triangle is highlighted as green and red dashed lines, respectively.

interaction, scalar values can also be assigned to nodes [91]. This technique is
useful when nodes represent an heterogeneous set of entities (e.g., see Chapter 6).
For example, if nodes indicate cargo ships in a transportation network, a weight
proportional to the cargo capacity can be assigned to each node to quantify the
possibility of a cargo ship to transport goods in the network. Another example
is climate networks, in which nodes correspond to geographical positions resulting
into different surface areas at different latitudes. In this last case, a spatial network
is built, namely a network in which nodes correspond to specific location in space.

Finally, complex networks can be classified into static and dynamic. A static
network is a graph whose elements do not vary in time, while in a dynamic (or
temporal) network, nodes and/or links change in time [92]. In this work, we consider
time-varying networks in which nodes are fixed while activation and weight of links
change in time. In this way, it is possible to investigate physical phenomena by
highlighting transient behaviours (e.g., see Chapter 7).

3.3.2 Network metrics
Each complex network presents specific topological features that have to be

investigated to understand the underlying complex system. Therefore, measure-
ments are essential to characterize, classify and model complex networks [85]. The
selection of the best network metrics that provide the most useful information on
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the physical system under investigation is a non-trivial task. Since, for each com-
plex system, nodes and links can be defined following different assumptions, the
choice of a set of metrics depends on the way the network is built and need to be
carefully addressed (see Ref. [83] for a compelling review on this topic). In what
follows, a report of the metrics exploited for analysing wall-turbulence is provided,
by highlighting the definition as well as the main features of each metric. It should
be pointed out that, in general, metrics can be associated to single nodes or to the
entire network.

Connectivity metrics

One of the simplest outcomes to extract from a network is how many connections
a node activates. Connectivity metrics, therefore, quantifies to the extent to which a
node connects to all the other nodes, thus also representing indexes of centrality. In
fact, in general, the more a node is connected the more it is important (i.e., central)
in the network. The definition of connectivity depends on network features, e.g.
whether the network is weighted or unweighted.

Node degree, K. The degree centrality of a node is defined as

K(i) ≡
Nv∑︂
j=1

Ai,j, (3.2)

thus quantifying the number of nodes linked to i. For example, in Figure 3.6, the
degree of node i = 1 is K(1) = 2, as there are two (red) nodes linked to i = 1. It
should be noted that K(i) is a measure of the cardinality (i.e., number of elements)
of the first neighbourhood Γ1(i), namely K(i) =| Γ1(i) |. The average degree is

K = 1
Nv

Nv∑︂
i

K(i), (3.3)

which quantifies the average number of links adjacent to a node in the network.

Network density, ϱ. A network metric related to the degree centrality is
the edge density, ϱ. It is defined as the number of links in the network, Ne, over
the total number of possible links, namely

ϱ ≡ Ne

Nv (Nv − 1) /2 = K
Nv − 1 , (3.4)

where the last equality holds for undirected networks. The edge density is a measure
of the sparsity of the network, thus playing a crucial role in the network construction
as the computational cost grows as ϱ increases. For example, the network shown
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in Figure 3.6 has a density ϱ = 0.17, since there are Ne = 22 links over 136
possible connections. In many cases, however, the value of ϱ is very small (e.g.,
ϱ ∼ 10−5 − 10−3), namely the adjacency matrices of real-world networks are sparse
(or can be sparsified via specific assumptions).

Node strength, S. In order to take into account link weights, the strength
of a node i is defined as

S(i) ≡
Nv∑︂
j=1

Wi,j, (3.5)

so that the average strength is S = ∑︁
i S(i)/Nv. While the degree, K(i), quantifies

the number of links adjacent to i, S(i) quantifies the sum of the intensity of the
relations between node i and all other nodes [93]. In other words, the strength is
the link-weighted variant of the degree.

Node volume-weighted connectivity, Kvw. Both the degree and strength
do not consider node heterogeneity. To take into account node weights, we define
the volume-weighted connectivity, Kvw, as the node-weighted degree [90], namely

Kvw(i) ≡
Nv∑︂
j=1

(Ai,j + δi,j)
Vj

Vtot

, (3.6)

in which at each node is assigned a scalar value, Vi, equal to the physical volume
that the node represents. Accordingly, Vtot = ∑︁

i Vi is the total volume occupied
by nodes (i.e., the total volume of the physical domain). In Eq. (3.6), δi,j is the
Kronecker delta, which is exploited to include self-links in the adjacency matrix
(see Eq. (3.1)), thus ensuring that Kvw(i) ranges in the interval (0,1].

Probability distributions. Important information on the behaviour of con-
nectivity metrics is provided by their distribution of probability. For example, as
mentioned in Section 3.1, scale-free networks – that are found in many real-world
applications – show power-law degree distributions, in contrast to Erdős-Rényi ran-
dom networks that show Poisson degree distributions [85]. The way the centrality
metrics are distributed, therefore, can provide useful information on the structure
of complex networks. However, in many real networks, the probability distribu-
tions of centrality metrics are heavy-tailed, mainly because of the intrinsic noise
due to the finite size network [80]. To overcome this issue, it is usually exploited
the cumulative distribution. As a result, we define the cumulative degree, strength
and volume-weighted connectivity distributions as P (K), P (S) and P (Kvw), re-
spectively. They represent the probability to find a node with degree, strength or
volume-weighted connectivity less than or equal to K, S or Kvw, respectively.
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Clustering metrics

The connectivity metrics are all based on two-nodes relationships, since they
only take into account the direct interaction between a node and all the other nodes.
An important feature of many networks is the presence of three-nodes relationships
(called triples), which are quantified by clustering metrics. More in detail, a triple
is a set of three nodes in which (at least) two of them are directly linked to the
third node. As a result, a triangle is defined a set of three nodes all linked between
them [80]. Examples of triple and triangle are illustrated in Figure 3.6 as red and
green dashed lines, respectively. Two clustering metrics are usually investigated:
the clustering coefficient and the transitivity.

Clustering coefficient, C. For undirected networks, the clustering coeffi-
cient is defined as

C(i) ≡ N△(i)
N∧(i) , (3.7)

where N△(i) and N∧(i) are the number of triangles and triples involving node
i, respectively. The clustering coefficient, C(i), ranges between zero and one and
provides information on the extent to which the neighbours of i are connected
with each other. For example, in Figure 3.6, C(i) = 1 for nodes i = {7, 16, 17},
because they are involved in one triangle and one triple, while C(i) = 0 for nodes
i = {1, 2, 3, 4, 5, 9, 12, 13}, because they are not involved in any triangle. Since
C(i) is defined as a node-related metric, the average clustering coefficient can be
defined as C = ∑︁

i C(i)/Nv. For the example shown in Figure 3.6, C = 0.27 that is
a relatively small value due to the low number of triangles in the network. High
values of clustering coefficient, instead, are typical of small-world networks, as
consequence of the well-connectedness between nodes. The formula in Eq. 3.7
can also be generalized for weighted networks by taking into account link or node
weights [91, 93].

Transitivity, T . Differently from the clustering coefficient, the transitivity
is a network-related metric (i.e., transitivity value are not associated to specific
nodes) and is defined as

T ≡ 3N△

N∧
, (3.8)

where N△ and N∧ are the total number of triangles and triples in the network,
respectively. The factor three in the numerator of Eq. (3.8) accounts for the fact
that each triangle comprises three triples, thus ensuring that (as for the clustering
coefficient) 0 ≤ T ≤ 1. For instance, in Figure 3.6, N△ = 3 (i.e., nodes {6, 7, 8},
{10, 11, 14} and {15, 16, 17}) while N∧ = 45, thus resulting a transitivity value T =
0.2. Although the transitivity is conceptually similar to the clustering coefficient,
C tends to emphasize the contributions of low-degree vertices, because N∧(i) ∼
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K(i)2 that appears in the denominator of Eq. (3.7). In some cases, therefore, the
transitivity is exploited instead of the clustering coefficient in order to avoid biases
related to low-degree nodes [94].

Assortativity measures

The connectivity metrics reported in Section 3.3.2 provide information on the
centrality of nodes in the network. However, connectivity metrics are not directly
able to quantify whether the centrality of a node is similar or not to the centrality
of other nodes. A network is said to be assortative or disassortative if nodes tend
to link with other similar or dissimilar nodes, respectively, where the similarity is
typically measured through a centrality metric (such as the degree or the strength).
If nodes do not tend to link neither to similar nor dissimilar other nodes (i.e., there
is not a preferred linking tendency), the network is said to be non-assortative.
In this work, two assortativity measures are considered: the Pearson assortativity
coefficient and the average nearest-neighbours connectivity.

Pearson assortativity coefficient, r. The Pearson assortativity coeffi-
cient, r, (or simply assortativity coefficient) is ussually defined as the Pearson
correlation coefficient of the degree of the nodes at the ends of each link [85]. Since
each link can be represented by a pair of nodes {i, j}, it is possible to assign to
each link a pair of node degree values, {K(i), K(j)}. The assortativity coefficient
can be evaluated, hence, as

r = cov [K(i), K(j)]
σK(i) · σK(j)

, ∀{i, j} so that Ai,j = 1, (3.9)

where cov(•, •) and σ represent the covariance and standard deviation, respectively.
The main advantage of r, therefore, relies on the ability to quantify network assor-
tativity by means of scalar value. Since it is expressed as a correlation coefficient,
r ranges in the interval [−1, 1]. Specifically, positive r values are obtained for as-
sortative networks (i.e., if nodes are linked with other nodes of similar degree),
while negative or null values of r indicate that the network is disassortative or
non-assortative, respectively. For example, in Figure 3.6, the network is slightly
disassortative (r = −0.13) as high degree nodes (i.e., K(8) = 4 and K(10) = 6)
mostly tend to link with low degree nodes. Although the assortativity coefficient is
typically defined for the degree centrality, other network metrics can be exploited
in Eq. (3.9) (e.g., by replacing K with the strength).

Average nearest-neighbours connectivity, Kvw
nn. Another way to spec-

ify network assortativity is based on the investigation of the relation between the
centrality index of a node, i, and the average of the centrality index of the first
neighbours of i. In fact, if the nodes linked to i have a centrality index that is
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on average similar to the centrality value of i, then the network show an assorta-
tive behaviour. In this work, we exploit the volume-weighted connectivity, Kvw, to
define the average nearest-neighbours connectivity, namely

Kvw
nn(i) = 1

Kvw(i)
∑︂

j∈Γ1(i)

Vj

Vtot

Kvw(j), (3.10)

thus representing the weighted average of the Kvw values of the first neighbours
of i [90]. As for the Eq. (3.6), Vj is the volume that the node j represents,
while Vtot is the total volume occupied by all nodes. If there is no correlation
between Kvw(i) and Kvw

nn(i) the network is said non-assortative; if, instead, Kvw
nn(i)

is an increasing/decreasing function of Kvw(i) the network is classified as assorta-
tive/disassortative [90].

Distance-based metrics

According to the assumptions exploited to build a network, different distance-
based metrics can be defined. For the fluid-related network analyses performed
in this work, three distances are exploited: topological, spatial (Euclidean) and
temporal distances. The topological distance between two nodes i and j is expressed
as the minimum length of a path between i and j, where a path is an alternating
sequence of nodes and links (considered only once) between i and j [80]. The
shortest path, therefore, is defined as the path with minimal cost between two
nodes. For example, in Figure 3.6, a shortest path is illustrated as an alternating
sequence of orange lines, thus representing the path with the minimum number of
links between nodes i = 1 and j = 9. Spatial and temporal distances are involved
whenever nodes correspond to spatial locations or temporal observations. In the
former, a spatial network analysis is carried out, while in the latter time-series
analysis is performed.

Average path length, L. Following the idea of shortest path, the average
path length, L, is defined as the average of all shortest path lengths in the net-
work [80], namely

L ≡ 1
Nv (Nv − 1)

Nv∑︂
i=1

Nv∑︂
j=1,j /=i

dG
i,j, (3.11)

where dG
i,j is the length of the shortest path between i and j. If the network is

unweighted, the length of the shortest path between two nodes i and j is basically
the number of intermediate links between i and j (e.g., in Figure 3.6, dG(1, 9) = 4).
On the other hand, if links are weighted, the length of the shortest path, dG

i,j, is
given by the sum of the link weight over the shortest path.
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Weighted physical distance, dw. In the context of spatial networks, nodes
could represent heterogeneous sets of locations (e.g., geographical areas at different
latitudes). In this case, the Euclidean distance between nodes have to take into
account the node weight. Here, we define the weighted physical distance between a
node i and a given set of nodes, R ⊆ G, of the network as

dw
χ(i) ≡ 1

VR

∑︂
j

(︃
|χi − χj|

Vj

Vtot

)︃
, j ∈ R, (3.12)

where χ ∈ {X, Y, Z} are node coordinates, and VR = ∑︁
j∈R Vj/Vtot is the (normal-

ized) volume occupied by nodes in the subset of nodes, R [90]. If node weight is
not taken into account, Vj = 1 for any j and Vtot = Nv, so that dw

χ(i) reduces to
the arithmetic mean of the distances |Xi − Xj| (equivalently for Y and Z).

Mean link-length, dt and average peak occurrence, φ. In time-series
analysis based on complex networks, a typical approach is to identify the nodes
of the network as the time instants of the time-series. For example, if a signal is
recorded for one minute at a sampling frequency equal to 100 Hz, the resulting
time-series possesses 6000 time instants corresponding to 6000 nodes (one for each
time instant). In this case, a temporal distance between nodes can be defined as the
difference between the time instants corresponding to nodes. Therefore, the mean
link-length, dt(i), of a node i is defined as the mean temporal distance between i
and its first neighbours, namely

dt(i) ≡ 1
K(i)

Nv∑︂
j=1

Ai,j |tj − ti|, (3.13)

where ti and tj are the time instants associated to nodes i and j, respectively [94].
Since the mean-link length quantifies a temporal distance, it is expressed in time
unit of measurement (e.g., seconds). In Figure 3.6, if we identify node labels
1, . . . ,17 with time instants (e.g., seconds) we obtain, for instance, dt(1) = 5 be-
cause the temporal distances between node i = 1 and nodes j = {2, 10} are equal
to 1 and 9, so that the mean value is 5.

The average of dt(i) over all network nodes is dt = ∑︁
i dt(i)/Nv. In some cases,

however, it is useful to highlight low values of mean link-length, thus the average
peak occurrence, φ, is defined as φ = 1/dt (which is a frequency metric). The name
of φ is related to the ability of this metric to capture the temporal occurrence of
extreme events in the time-series (see Chapter 5) [94, 95].

37



38



Chapter 4

Fluid flows and network science: a
multidisciplinary approach

“The greatest danger in times of
turbulence is not the turbulence.
It is to act with yesterday’s logic.”

Peter F. Drucker

In this Chapter, a review of the principal applications and methodologies devel-
oped in the last decade to analyse fluid flows by means of complex network tools
is provided. The three main approaches to exploit spatio-temporal data for the
network construction are introduced and detailed in the context of turbulent flows.
Particular emphasis is given to (i) the current literature to map turbulent flows
into networks, and (ii) the procedures adopted in this work, which are introduced
as a preparatory material for the result sections.

The Chapter is organized as follows. Section 4.1 presents a brief overview of
the approaches to spatio-temporal fluid data, which are examined in detail in the
subsequent sections of this chapter. In particular, time-series analysis via complex
networks is described in Section 4.2, by focusing on the visibility graph approach.
Section 4.3 includes information about the construction of spatial networks from
fluid flows in the Eulerian viewpoint, while details on the complex network-based
analysis in the Lagrangian viewpoint are reported in Section 4.4.
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Figure 4.1: Conceptual framework on the different perspectives to analyse spatio-
temporal (turbulent) data via complex networks.

4.1 From spatial and temporal data to complex
networks

The great progress of network science in developing new tools of analysis (i.e.,
novel network formulations and metrics) has involved a wide spectrum of disci-
plines, comprising fluid mechanics. Accordingly, the network-based approach to
fluid flows has recently been tackled, for both real-world and prototypical fluid flow
applications (e.g., see Ref. [96]). In particular, the approach to data extracted from
fluid-related measurements is physics-based, namely spatio-temporal data are ex-
ploited with the aim to extract non-trivial features (e.g., recurrent patterns) from
the flow dynamics. Following this idea, three main ways to exploit fluid flow data
for network analysis have been explored:

1. time-series from non-linear systems are mapped into complex networks, where
nodes correspond to (group of) time instants;

2. spatio-temporal fields are mapped into spatial networks, where nodes refer to
specific spatial locations in a two- or three-dimensional space;

3. Lagrangian particle trajectories are exploited to build temporal networks (in
which particles are associated to nodes) or spatial networks (where particle
motion is used as an information medium between different locations).

In this work, these three approaches are carried out with the aim to study wall-
bounded turbulence. Specifically, time-series of turbulence quantities are mapped
into networks by means of the visibility algorithm [97] (see Section 4.2), while the
Eulerian approach is based on the Pearson correlation coefficient of spatio-temporal
fields, resulting into three-dimensional spatial networks (see Section 4.3). Finally,
a Lagrangian viewpoint is adopted to investigate the turbulence mixing effects on
the dynamics of a set of fluid particles, which results in a time-varying weighted
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network (see Section 4.4). Figure 4.1 illustrates a sketch of the workflow employed
to map turbulence data into complex networks.

4.2 A network-based approach to time-series
analysis

Time-series analysis – i.e. the study of the temporal evolution of a dynamical
system from a recorded series – is a fundamental problem in several research fields.
Besides the classical methods (e.g., PDFs, Fourier and wavelet transforms), complex
network analysis of time-series has recently emerged as a powerful tool to study non-
linear complex systems. The aim is to obtain a graph from each time-series, which
is able to inherit and highlight non-trivial information of the system generating
the series. With this aim, complex networks have been exploited to study different
fluid flows, such as two-phase flows [98–102], turbulent jets [103–106], biomedical
flows [107, 108], atmospheric and oceanic flows [109–112], reacting flows [113–117]
as well as magneto-hydro-dynamic turbulence [118] and fully developed turbulent
flows [119].

From a methodological point of view, three main approaches have been pro-
posed so far to map time-series into networks [120, 121]: (i) proximity networks,
(ii) transition networks, and (iii) visibility graphs. In proximity networks, nodes
are typically associated with groups of temporal observations called state vectors,
as they are representative of a state of the system. In other words, time-series are
dived into sub-intervals that are exploited as the network nodes. Among the differ-
ent ways to activate links in proximity networks, correlation- and recurrence-based
approaches have been largely employed [121]. Basically, for correlation-based prox-
imity networks, links are active if the correlation between two nodes (representing
two states of the system) is sufficiently strong. In recurrence networks, instead,
states (i.e., nodes) are embedded in a phase-space (with dimension equal to the
length of each state vector) and a link is enabled if two states are sufficiently close
in the phase-space. In this last case, distances in phase-space are measured by
means, for example, of the Euclidean or maximum norm. Phase-space reconstruc-
tion from time-series is a fundamental issue in the context of proximity networks,
since it is directly related to the node definition. The typical approach consists in
a time-delaying embedding, i.e. to decompose the signal by time-delaying it into
sub-series with fixed length (equal to the embedding size), so that each sub-series
obtained is embedded in the phase-space. Other approaches can involve signal
derivatives for phase-space reconstruction, although they are less common than
time-delaying embedding [121].
Another class in complex network analysis of time-series is represented by transition
networks. In this case, nodes correspond to discrete states, while a link between two
nodes is active if there is a non-zero probability that one node is directly followed
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by the other node in time [121]. In other words, links are established if there is
a direct transition in time from one state to another state. From a mathematical
point of view, this corresponds to a Markov chain with given transition probabili-
ties between discrete states [121]. As a result, transition networks are directed, i.e.
links possess a specific direction.
Finally, visibility graphs represent a class of networks that rely on a geometrical
criterion to map time-series into complex networks. Differently from proximity
and transition networks, in visibility graphs each node correspond to a single value
(i.e., a scalar state) of the series. As a result, one of the main advantages of the
visibility-based approach is that is non-parametric, while in proximity and transi-
tion networks each (vector) state have to be defined (usually involving one to two
arbitrary parameters). Links in visibility graphs are established based on a convex-
ity criterion or on a simplified version based on an ordinal criterion. The former
is usually referred as natural visibility graph (or simply visibility graph), while the
latter is the horizontal visibility graph [121].

It should be noted that, although the three methodological approaches described
so far have been usually employed for univariate time-series, each technique can
also be extended to multivariate time-series analysis [121]. Accordingly, the multi-
dimensional dataset is mapped into multi-dimensional network structures referred
to as multilayer networks. Each signal in the multivariate set is mapped (by adopt-
ing a proximity-, transition- or visibility-based approach) into a graph correspond-
ing to a specific layer in the multilayer network structure. In this way, it is possible
to investigate the inter-connections between nodes in the same layer (as in univari-
ate time-series analysis) but also between nodes in different layers, thus unravelling
relations between the signals in the multivariate dataset [121].

In this work, thanks to its ability to capture important information (e.g., the
presence of extreme events) of the mapped signal, the visibility graph approach is
exploited for the univariate time-series analysis of velocity components in a tur-
bulent channel flow (see Section 5.3), and vertical turbulent transport of a passive
scalar in a turbulent boundary layer (see Section 5.4).

4.2.1 The visibility graph
The idea to map a time-series into a graph through the visibility algorithm

has been proposed by Lacasa et al. [97], who have shown that time-series with
different structural properties are mapped into networks with different topologies.
According to the natural visibility algorithm, two values (ti, s(ti)) and (tj, s(tj)) of
a univariate time-series s(tn), n = {1,2, ..., N}, have visibility, and consequently are
two connected nodes of the associated network, if the following condition

s(tk) < s(tj) + (s(ti) − s(tj))
tj − tk

tj − ti

, (4.1)
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Figure 4.2: Sketch of the process for the building of visibility networks. An example
of small time-series, s(t), is displayed as blue stem lines, while the corresponding
visibility graph is shown as blue dots and green lines.

is fulfilled for any ti < tk < tj (or equivalently i < k < j). Figure 4.2 illustrates
an example of the procedure for a small time-series with four values. From a
geometrical point of view, two nodes are linked if there is a straight line (called
visibility line) that connects the two nodes without intersecting any intermediate
data. For example, in Figure 4.2, nodes i = {1, 4} are not connected because node
j = 3 obstructs the visibility between them. The condition in Eq. (4.1) is basically
a convexity criterion, so that time-series (or sub-intervals) that are convex result
into fully connected networks. Furthermore, by exploiting the relation in Eq. (4.1),
the visibility networks are undirected and unweighted.

The main advantage of the visibility algorithm is that it does not require any
a priori parameter. However, the visibility graph is invariant under rescaling and
translation of both horizontal and vertical axes (i.e., affine transformations) [97].
The invariance to affine transformations implies that two time-series with differ-
ent mean and standard deviation values but with similar temporal structure, are
mapped into the same visibility network. If the analysis should be sensitive to
affine transformations of the series, the invariance represents a drawback of the
method. On the other hand, if the focus is on the temporal structure of the series
(as in the present work), the invariance is a potential benefit. In fact, it is possible
to exploit the visibility graph approach to analyse series without a pre-processed
normalization of the series.

The visibility graph approach has been widely employed and different variants
of the algorithm have been proposed. The horizontal visibility graph is the main
variant of the (natural) visibility graph, and it can be obtained considering only

43



4 – Fluid flows and network science: a multidisciplinary approach

horizontal lines among data [122]. Differently from the natural visibility graph, the
horizontal visibility algorithm satisfies the ordering criterion

s(tk) < min [s(ti), s(tj)] , for any ti < tk < tj. (4.2)

Due to its simplicity, exact results for the horizontal visibility applied to random
time-series have been obtained [122]. Moreover, differently from the natural visibil-
ity algorithm, the degree distribution of horizontal visibility graphs is independent
from the PDF of the mapped time-series [123]. Accordingly, the degree distribution
in horizontal visibility graphs can be thought as a direct measure of the (linear and
non-linear) temporal dependence existing in the time-series [122]. A review of the
other minor variants of the visibility graph is reported in Ref.s [121, 124].

From a computational point of view, a naive visibility algorithm requires O(N 2
v )

operations to map Nv data of a series in a network (see also Appendix A). To com-
putationally improve this procedure, optimized approaches have been proposed so
far [125–127]. A fast ®MATLAB implementation of the natural and horizontal
visibility algorithms has been developed, which relies on a divide-and-conquer ap-
proach [125] (the codes are available online, see Ref.s [128, 129]).

4.2.2 Visibility applications to turbulent flows
In the context of turbulent flow analysis, both the natural and the horizontal vis-

ibility have been exploited. In 2010 Liu et al. [119] took advantage from the visibil-
ity algorithm to study time-series of energy dissipation rates in a three-dimensional
fully developed turbulence. The degree distribution of visibility networks built
from the energy dissipation rates were found to follow a power-law behaviour in
the distribution tail. This suggested that the presence of self-similarity in the en-
ergy dissipation rate signals. Additionally, the authors evaluated the assortativity
coefficient (Eq. (3.9)), which was found to be positive (assortative network).
Few years later, Charakopoulos et al. [104] employed the visibility algorithm to
discriminate different regions in an experimental turbulent heated jet. By investi-
gating various network metrics at different spatial locations – such as the clustering
coefficient (Eq. (3.7)) or the average path length (Eq. (3.11)) –, the authors were
able to identify the effects of small and large vortical structures on the time-series
of temperature. They were also able to locate the jet axis position as corresponding
to the local minimum value of the network metrics.
Turbulent jets have further been studied via the natural and horizontal visibility
algorithms. In 2015, Manshour et al. [105] applied the horizontal visibility algo-
rithm to acceleration series in a low-temperature helium turbulence, extracted from
hot-wire measurements. As in Ref. [119], the authors focused on the evaluation of
the degree distribution and network assortativity. By exploiting data at different
Reynolds numbers, a stretched exponential function was proposed to model the
behaviour of degree distributions, with slope decreasing as Re increases. Moreover,
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Figure 4.3: Examples of time-series (top) and the corresponding network topology
(bottom). Network visualizations are obtained through the OpenOrd layout algo-
rithm [130]. The streamwise velocity (left), passive scalar concentration (middle),
and vertical turbulent transport (right) are considered. Data are experimentally
measured in a rough-wall turbulent boundary layer [95]. Time-series are shown in
(m/s), (ppm) and (ppm · m/s) from left to right, respectively.

the visibility networks were found to be assortative, with increasing values of as-
sortativity coefficients as the Reynolds number increases. Recently, Murugesan et
al. [106] investigated the forced synchronization of a hydrodynamically self-excited
jet, by mapping time-series of streamwise velocity intensity via natural visibility.
The authors explored several metrics (namely the degree, clustering coefficient, av-
erage path length and assortativity coefficient) to study the route to synchroniza-
tion, by finding that metric values change for different routes to synchronization.
The visibility algorithm has also been used in the context of turbulent reacting
flows. By mapping time-series of unsteady pressure measured in a combustor, Mu-
rugesan and Sujith [113] found that acoustic pressure in the combustor can be
represented as a scale-free network. In particular, the scale-free behaviour of com-
bustion noise is due to the presence of turbulence. By exploiting network metrics,
therefore, visibility networks can provide early warning for the onset of combustion
instability.

In Chapter 5, results from the application of natural visibility algorithm to
wall-bounded turbulent flows are reported. Differently from the previous works, a
specific emphasis is given to the characterization of the temporal structure of the
time-series. For example, Figure 4.3 shows three different (experimentally mea-
sured) signals and the corresponding network topology. As can be seen, different
time-series are mapped into different visibility networks that, hence, are able to
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inherit the series temporal structure. Consequently, network metrics are exploited
to quantitatively infer the different structure of the signals in terms of extreme
events (i.e., peaks in the series) and small variations. A physical interpretation of
the metric behaviour along spatial directions is provided, thus linking the temporal
structure of the time-series with the underlying turbulence dynamics.

4.3 Spatial networks in the Eulerian viewpoint
From a practical point of view, physical systems are typically represented through

sets of data that are discrete in time and/or in space. This is the case of turbulent
flows in which, for example, data are acquired numerically or experimentally at
specific grid points or spatial locations, respectively. When nodes represent specific
spatial positions, the corresponding graph is named as spatial network. Thanks
to the ability to explicitly represent a discrete set of elements, therefore, complex
networks provide a suitable tool for the analysis of discrete systems embedded in a
two- or three-dimensional space.

4.3.1 Methodologies and Applications
A plethora of possible spatial networks can be defined from real-world systems

(e.g., transportation networks, internet, power-grids among others), according to
the node definition. For fluid flows, the principal application – also from an histor-
ical point of view – is represented by climate networks (see, among many others,
Ref.s [131–140]); other important applications include geophysical flows [141–146],
atmospheric dispersion [147], isotropic turbulence [148], vortical flows [149, 150] as
well as hemodynamics [151] and thermoacoustic combustion [152–157].

In climate networks, nodes correspond to regions of the Earth surface while
time-series of climatological variables (e.g., temperature, rainfall, pressure, or sim-
ilar quantities) are exploited to activate links [158]. The Earth surface is typically
represented by a uniform grid, where each region of the grid is associated to a
network node. A uniform grid implies that nodes represent different surface areas
at different latitudes. In fact, grid areas close to the equator are larger than close
to the poles. As a result, in order to take into account that nodes represent an
heterogeneous set, a weight proportional to the surface area is typically assigned
to nodes in climate networks [158]. Links are usually activated based on the Pear-
son correlation coefficient (which accounts for linear dependencies) or the mutual
information (which also accounts for non-linear dependencies). Despite the climate
network approaches are based on the zero-lag correlation coefficient, weighted net-
works based on the maximal and minimal cross-correlation at different time-lags
have also been investigated [158]. By doing so, complex networks are able to re-
veal non-trivial patterns in the atmospheric circulation, such as teleconnections,
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via different climatological variables. Teleconnections refer to climate relations
between geographically remote regions, farther than the correlation length scale of
the variable. In particular, climate teleconnections are mainly caused by the energy
transport and propagation of waves, providing information about the recurrence of
climate variability of distant locations.

Recently, the concept of flow networks have been pursued for geophysical studies
of transport phenomena. As in climate networks, nodes correspond to geograph-
ical locations. However, links are not based on correlations but via tracking of
substances between different nodes [158]. For example, when fluid transport is fo-
cused, fluid particle trajectories can be exploited to connect different regions. By
doing so, a link is established if an exchange of fluid occurs between two nodes in
a given time interval, and the weight of the link is proportional to the amount of
fluid transported [158]. The relation between correlation-based climate networks
and flow networks was investigated in Ref. [142]. Since Lagrangian trajectories are
exploited to activate links, this approach is also referred as Lagrangian flow net-
work [143]. However, it is worth to underline that – despite the terminology – flow
networks are actually spatial networks, since nodes represent fixed geographical
locations.

Krueger et al. [150] recently took advantage from network formulation to provide
a method that is able to compare and classify different vortical flow fields. With this
aim, a spatial proximity criterion was employed to activate links between nodes,
which represent critical points of the velocity field in a von Kármán vortex street
setup. Concerning vortical flows, Taira et al. [149] proposed a network formulation
based on the Biot-Savart law with the aim to investigate vortical flows in a 2D
decaying turbulence. More in detail, a discretization of the physical domain in
square cells was carried out, so that each network node corresponds to a grid cell.
Since a (vortical) fluid element in a given position induces a velocity in another
position (following the Biot-Savart law), the interaction between two locations can
be quantified via the amount of induced velocity. Therefore, links were activated
for each pair of nodes, and a weight was assigned to each link equal to the average
induced velocity between the two nodes. By doing so, the authors found that the
strength probability distribution (see Section 3.3.2) follows a power-law behaviour,
whose exponent change as turbulence decay.

Following the approach by Taira et al. [149] relying on vorticity-induced ve-
locity interactions, Murayama et al. [153], Takagi et al. [154] and Hashimoto et
al. [156] analysed the dynamics of the velocity and vorticity fields in a turbulent
combustor during the thermoacoustic combustion oscillations. This phenomenon
has important practical applications (such as gas-turbine power plants and propul-
sion systems in aircraft and rocket engines), since strong vibrations induced by
large-amplitude thermoacoustic instability can lead to severe structural damages.
Moreover, the velocity and the acoustic power fields have also been exploited to
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Figure 4.4: Sketch of the construction of a correlation-based spatial network from a
turbulent spatio-temporal field. The top-left image shows the streamwise velocity
fluctuations, u′, in a 2D section of a turbulent channel flow, while in the adjacency
matrix, ones (i.e., links) are depicted in grey.

build spatial networks based on the correlation [152] and a spatial-proximity cri-
terion [157], respectively. In both works, the authors investigated the spatial flow
dynamics at the onset of thermoacoustic instability, which is a phenomenon that
requires to be mitigated in a turbulent combustor. By exploiting the network-based
approach, straightforward strategies for mitigating oscillatory instability can then
be pursued, as shown in Ref. [159].

Although turbulent spatio-temporal fields have been considered as case-study,
spatial network analyses have been basically limited to two-dimensional flows.
The first three-dimensional analysis of turbulence was carried out by Scarsoglio
et al. [148], who built a spatial network by exploiting the correlation coefficient
of the turbulent kinetic energy in homogeneous isotropic turbulence. The authors
found out that, despite of the isotropy and homogeneity of the flow, the network is
able to reveal spatial coherence associated to vortical structures. In order to extend
the approach pursued in Ref. [148] to wall-turbulence (which is largely involved in
practical applications), spatial networks obtained from three-dimensional turbulent
fields in a channel flow are focused in this work.
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4.3.2 Spatial networks from 3D turbulent flow fields
By following the ideas developed so far about spatial network analysis of fluid

flows (especially of climate networks), in this work a numerically simulated turbu-
lent channel flow is investigated. An example of the procedure carried out in this
work is shown in Figure 4.4. The nodes of the network are associated to grid points
(i.e., spatial locations) in the domain. Due to the inhomogeneity of the flow in the
wall-normal direction, a non-uniform spatial discretization in the vertical direction
is adopted so that a weight is assigned to each node which indicates the spatial
extension of that node, namely the volume of the corresponding grid cell. As a
consequence, nodes at different wall-normal coordinates have different weights.

To activate links, time-series of velocity are exploited in order to evaluate the
correlation coefficient, defined here as

Ci,j = cov [u (Xi, Yi, Zi; t) , u (Xj, Yj, Zj; t)]
σui

· σuj

, (4.3)

where u is the streamwise velocity, (Xi, Yi, Zi) are the coordinates of node i and
σui

is the standard deviation of u in point i (the same holds for j). The stream-
wise velocity component is used in Eq. (4.3) for the definition of Ci,j as u is the
principal variable investigated in this work. However, results for the wall-normal
velocity components are also reported and compared to the ones for the streamwise
component (see Chapter 6). As illustrated in Figure 4.4, only the highest values
of correlation coefficient are retained, by thresholding Ci,j. Therefore, a link in the
network is established if |Ci,j| > θ, where θ ∈ (0,1) is a threshold value. In general,
as for climate analysis, a high value of the threshold θ is chosen to highlight the
strongest correlations.

Due to its simplicity and its broad use in the turbulence literature [160] and spa-
tial networks [158], the correlation coefficient represents the most suitable metric
to start showing the potential of complex networks applied to wall-bounded turbu-
lence. It is worth to stress that Ci,j explicitly depends on the three coordinates of
nodes i and j. In turbulence analysis, instead, the average correlation coefficient,
⟨C⟩, is typically considered, which (differently from Ci,j) does depend only on the
wall-normal direction, as the operator ⟨•⟩ averages in the homogeneous directions
and time. Therefore, through the network formalism – namely by exploiting Ci,j –
the spatial information of the correlation coefficient is preserved by the active links
in all directions.

Finally, it should be noted that spatial networks are usually very large (i.e., they
possess a huge number of nodes and links), since a high number of grid points is
usually required to sufficiently resolve the flow field. In terms of computational cost
(see Appendix A), the evaluation and thresholding of all the correlation coefficient
values, Ci,j, is basically the same as that for evaluating the average value, ⟨C⟩.
However, the size of the resulting correlation-filtered matrix is usually very large
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and, although the memory cost is limited due to network sparsity (as discussed in
Section 6.2), the implementation of post-processing procedures to extract network
metrics could require, in some cases, optimized approaches that deal with a large
number of nodes and links. Accordingly, this aspect should be carefully managed
in three-dimensional flows, by properly selecting the grid spatial resolution and the
value of the threshold, θ. The former, in fact, directly affects the number of nodes
in the network, while the latter affects the number of links (since the number of
high correlation coefficient values decreases if θ increases). In order to tackle this
issue, different approaches have been developed. Nair et al. [161] prosed a network
sparsification based on spectral properties of the graph and tested the method to
a vortical flow field. In Ref. [162], instead, Meena and Taira developed a network
community-based approach to formulate reduced-order models; the technique was
applied to the dynamics of vortical flows and to wake flows over a NACA 0012
airfoil. Recently, Bai et al. [163] suggested to reduce the size of the adjacency
matrix by applying a randomization technique based on a sampling of the matrix
rows and columns. As for the previous mentioned studies, the authors exploited a
vortical flow to test their approach. In this work, the value of the threshold, θ, is
selected as a trade-off between a high number of nodes (due to a too low θ value)
and the link significance (due to a too high θ value that mainly enables strong
but trivial connections). Moreover, to decrease the network size in terms of nodes,
the spatial discretization of the domain in the homogeneous directions is increased
with respect to the numerical simulation. Specifically, the spatial discretization is
selected in order to be smaller than the (average) decorrelation length scales in the
homogeneous directions.

The results of the spatial network analysis of the turbulent channel flow are
reported in Chapter 6. The analysis is carried out at different network levels,
namely a global level (to explore the features of the entire network), a mesoscale
level (to highlight the features of groups of nodes), and a local level (to study the
relation between representative nodes and the remaining nodes in the network).
A parametric analysis of the results is also provided to characterize the effects
of different correlation threshold values on the network structure. In this way, a
characterization of the turbulent channel flow is given via a spatial network, which
is able to retain – through the texture created by links – the spatial information of
high-correlation values between different locations in the domain.

4.4 Complex networks from Lagrangian particle
trajectories

Besides the Eulerian approach that has been mainly fostered by climate studies,
the Lagrangian viewpoint has been recently adopted for complex network analysis
of fluid flows. Differently from spatial networks where nodes correspond to fixed
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spatial locations, in Lagrangian networks nodes are associated to particles that
move (passively or actively) in the fluid domain. Since there is a univocal relation
between a particle and its trajectory, a node can represent either a particle or its
trajectory. In the former case, an attribute is assigned to each node equal to the
particle position (which changes in time and in space). We recall that in geophysical
spatial networks (also referred as Lagrangian flow networks) particle trajectories are
exploited as a mean that conveys an information about fluid transport, but nodes
are fixed spatial locations. In the Lagrangian viewpoint, instead, nodes do directly
represent particles (or their trajectory).

According to the way in which links are defined, two main categories of La-
grangian networks have been proposed: proximity-based and similarity-based net-
works. In proximity-based networks, a link is established if two particles come suf-
ficiently close in space during their motion; on the other hand, in similarity-based
networks, two particles are linked with each other if they follow similar trajecto-
ries. By exploiting these two concepts, complex network tools have been employed
to perform spectral graph analysis for coherent structures identification [164–166]
and particle clustering [167, 168], estimation of parameters [169], as well as mixing
analysis [170]. In what follows, details on the techniques and applications of the
network formulation in the Lagrangian viewpoint are reported (see Section 4.4.1)
and the methodology employed in this work is introduced (see Section 4.4.2).

4.4.1 Methodologies and applications
A proximity-based approach was firstly carried out by Hadjighasem et al. [164],

who exploited spectral graph properties for the coherent vortex detection. By
following the principle that coherent structures can be characterized by a set of
particles displaying short relative distances over time, the authors tested their ap-
proach to three cases: a Bickley jet flow (which serves as a model for zonal jets in
the atmosphere), an ocean surface dataset, and an Arnold-Beltrami-Childress flow.
Weighted graphs were built, where nodes were associated to particle trajectories
and the link weight is inversely proportional to the trajectories relative distance. In
other words, a time-averaged Euclidean distance between trajectories is exploited
to weigh links, so that closer trajectories result in higher link weights [164]. By
doing so, the authors were able to identify coherent vortices in a robust way, even
in absence of a preliminary knowledge of the number of present vortices in the
domain.

Following the idea pursued in Ref. [164], other proximity-based works have
been carried out to study turbulent superstructures in Rayleigh-Bénard convec-
tion [167] and mixing in geophysical flows [168, 170]. Specifically, a partitioning
of the flow based on spectral properties of the network was performed by Schneide
et al. [167], in order to detect very-large coherent structures in a numerical setup
of a Rayleigh-Bénard convection with large aspect ratio. The authors found that
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the resulting clusters match well with the patterns created by temperature super-
structures. In the context of geophysical flows, spectral graph partitioning was
employed by Chakraborty et al. [168] who investigated the presence of dense parti-
cle subclusters in coherent vortices, thus highlighting the regions of strong mixing.
Finally, Padberg-Gehle and Schneide [170] – differently from the other approaches
– exploited classical network metrics (such as degree centrality and clustering coef-
ficient) to investigate Lagrangian transport and mixing. The authors (by following
the idea of encounter volume by Rypina and Pratt [171]), focused on two case stud-
ies, a Bickley jet and a stratospheric polar vortex. They found that network metrics
can be effectively used as indices to quantify the intensity of spatial mixing.

In 2017 Schlueter-Kuck and Dabiri [165] proposed an alternative way – called
coherent structure colouring – to weigh links between particles, which is based on a
criterion of similarity between particle trajectories. The authors exploited the tra-
jectory information (i.e., particle positions at each time) to calculate the standard
deviation of the relative distance between two fluid particles, normalized by the
average distance during the same period. The link weights were then associated to
the normalized standard deviation between trajectories. In this way, since the stan-
dard deviation can be viewed as an index of (dis)similarity between two datasets,
each link quantifies the extent to which two trajectories are similar over a given
time interval. The authors exploited the graph spectral properties of the network
to identify coherent structures in the flow, by testing their approach to a quadruple
gyre flow (which serves as a model for oceanic flows), a Bickley jet and a vortex
fluid ring ejected from an axisymmetric nozzle. In a successive work, the same
authors employed their coherent-structure-colouring technique to estimate model
parameters with potential implications in the context of geophysical flows [169].

Finally, based on the similarity-based approach, Husic et al. [172] extended the
idea pursued in Ref. [165] by providing a simultaneous coherent structure colour-
ing methodology. While in the classical coherent-structure-colouring technique the
eigenvector associated to the largest eigenvalue of the graph Laplacian was ex-
ploited to detect coherent vortices [165], Husic et al. used all the eigenvectors to
simultaneously cluster the system states. As a result, the authors were able to pro-
vide information on the number, size and shape of vortical clusters, which naturally
emerge without prior knowledge of the coherent structure features.

4.4.2 Temporal network-based analysis of turbulent mixing
Although the Lagrangian viewpoint has been adopted for the network analysis

of fluid flows, most of the works address two-dimensional geophysical flows (as
discussed in Section 4.4.1). Additionally, Lagrangian particle trajectories have been
only exploited to build static networks, namely the temporal information intrinsic
to each trajectory is enclosed in each link. In other words, each link has usually
been assumed to represent a relation between two particles over a time interval.
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Figure 4.5: (Top) Sketch of the setup for the Lagrangian-based analysis, comprising
two trajectories (dashed orange and green lines) of two particles A and B (orange
and green dots) and their reference ellipsoids. (Bottom) Time-sequence of the con-
nections between particles A and B (the corresponding sampling time is highlighted
by a blue dashed box).

In this work, a three-dimensional setup of a numerically solved turbulent channel
flow is employed to study turbulent mixing by means of a set of fluid particles (i.e.,
tracers). Differently from previous studies, links are here established at each time-
step, thus resulting in a time-varying network. Specifically, a time-varying network
is a time-ordered sequence of single networks built at each time, and modelled as
an ordered set of adjacency or weight matrices [92]. In order to activate links, a
spatial-proximity criterion is exploited, namely if two particles come sufficiently
close in space during their motion a connection is established between them. For
example, Figure 4.5 shows a sketch of the setup, in which two particles move in the
domain, and the corresponding connection timeline, which highlights when particles
connect with others over time.

To specify the particle proximity, we assume that a particle i is connected to a
particle j if i lies inside a reference ellipsoid centred at j, and vice versa (by sym-
metry). In the example provided in Figure 4.5, the two particles are connected at
the time t2 in the time-window considered, since particle A is inside the ellipsoid of
particle B (and vice versa). The ellipsoid is geometrically anchored to each particle
location and it is chosen as reference geometry to take into account the anisotropy
of the flow. Therefore, while in previous works a spherical reference geometry was
adopted resulting in one parameter equal to the sphere radius [164, 167, 168, 170],
three geometrical parameters are required in our formulation, corresponding to the
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semi-axis lengths of each ellipsoid.
The choice of the semi-axis length (as the choice of the sphere radius in previous
works) is generally a non-trivial task which depends on the specific problem under
study. The ellipsoid semi-axes are here indicated as {ax, ay, az} and set proportional
to the average pairwise distances between particles in each Cartesian directions. In
this way, the increase of the average mutual distance between particles with time
– that is mainly due to the streamwise dispersion and partly to the spanwise mix-
ing – is taken into account. In more detail, aχ(t) = αχ · dχ(t), where dχ(t) is the
average Euclidean distance between all particles along the direction χ = {x, y, z},
while α is a proportionality constant. Although α may also explicitly depend on
the Cartesian direction and time, it is set for simplicity as a constant value in the
range α ∈ (0,1]. In so doing, the ellipsoid size in each Cartesian direction does not
exceed the average pairwise particle distance (this is crucial along the wall-normal
direction since particles can not exceed the inter-wall height).

Finally, it should be noted that the approach proposed by Padberg-Gehle and
Schneide [170] for the study of Lagrangian transport and mixing in geophysical flows
was obtained by checking whether a pair of particles comes sufficiently close in space
at least once in the time window considered (so that the temporal details of particle
trajectories do not explicitly emerge). In this work, instead, the flow anisotropy
and temporal dependence are explicitly taken into account. The results of the
application of the time-varying network formulation are reported in Chapter 7.
Specifically, since the spatio-temporal evolution of particles is captured at each time
step, a rich and detailed time-dependent picture of turbulent mixing is provided
through the analysis of several network metrics, thus highlighting the temporal
development of particle dynamics due to the turbulent motion.
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Chapter 5

Visibility-based analysis of
time-series in wall-turbulence

Some of the contents presented in this Chapter have been previously published.
Below are provided the references:

G. Iacobello, S. Scarsoglio, and L. Ridolfi. “Visibility graph analysis of wall turbu-
lence time-series”. In: Physics Letters A 382.1 (2018), pp. 1–11. doi: 10.1016/j.
physleta.2017.10.027.

G. Iacobello, L. Ridolfi, M. Marro, P. Salizzoni, and S. Scarsoglio. “Complex
Network Analysis of Wind Tunnel Experiments on the Passive Scalar Dispersion in
a Turbulent Boundary Layer”. In: Progress in Turbulence VIII. ed. by R. Örlü, A.
Talamelli, J. Peinke, and M. Oberlack. Cham: Springer International Publishing,
(2019), pp. 215–220. doi: 10.1007/978-3-030-22196-6_34.

G. Iacobello, M. Marro, L. Ridolfi, P. Salizzoni, and S. Scarsoglio. “Experimental
investigation of vertical turbulent transport of a passive scalar in a boundary layer:
Statistics and visibility graph analysis”. In: Physical Review Fluids 4.10 (2019),
p. 104501. doi: 10.1103/PhysRevFluids.4.104501.

5.1 Motivation
Time-series analysis is a broadly adopted approach to study the temporal evo-

lution of dynamical systems, specifically those with high intrinsic complexity. So
far, different methods (such as PDFs or Fourier and wavelet transforms) have been
developed to extract information from time-series. However, since each method
unavoidably loses some information about the temporal structure of the series anal-
ysed, new approaches are continuously required to fill this lack.

In this work, the visibility algorithm [97] is employed to systematically inves-
tigate time-series from wall-bounded turbulent flows, with the aim to advance the
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level of information of classical statistics. Motivated by the increasing availability
of numerical and experimental measurements, a powerful tool relying on complex
networks is provided to extract non-trivial information from time-series. In this
way, a different perspective on (wall-bounded) turbulence as well as benchmark
results for future network-based investigations are given.

Although the visibility algorithm has been widely employed, the meaning of the
metrics extracted from visibility networks has often been merely interpreted as a
network feature rather than a time-series feature. For example, a high or low value
of average degree (see Eq. (3.3)) in a visibility network indicates the activation of a
large or low number of connections, but no information is given on how the signal
is made to produce higher or lower value of degree. Therefore, although the overall
features of the time-series are inherited by the corresponding visibility graphs, it is
not straightforward how topological network metrics are affected by different tem-
poral behaviours of the series. To address this issue, in this work, particular care is
given not only to relate the network topology to the temporal structure of the se-
ries, but also paying attention to the physical interpretation of the network metrics
with respect to the flow dynamics. New insights into how the network topology is
affected by important temporal features of the mapped signal – namely, irregular-
ities and extreme events – are thus provided. A systematic approach to highlight
temporal features of the time-series through specific combinations of the trend of
the network metrics is thus proposed and discussed. By doing so, a qualitative
correspondence between the network metrics and the flow dynamics is presented,
underlying the ability of the method to identify different flow regions.

In order to assess the potential of visibility networks to shed light on the tem-
poral structure of the signals and, in turn, in the turbulence dynamics, two flow
setups are selected. Specifically, a numerically simulated (fully-developed) turbu-
lent channel flow and the dispersion of a passive scalar plume in an experimental
turbulent boundary layer are focused. In so doing, both numerically and experi-
mentally measured time-series are considered, thus making the visibility algorithm
a suitable to map data from either numerical simulations or experiments.

The Chapter is organized as follows. In Section 5.2, the meaning of visibility-
based network metrics is related to the temporal structure of the signals. The
application of the natural visibility algorithm to velocity time-series in a turbulent
channel flow is discussed in Section 5.3. The behaviour of the network metrics as
a function of the wall-normal coordinate and their relation to the flow dynamics
is emphasized for the three velocity components. Additionally, in Section 5.3.3, a
parametric analysis on the temporal discretization as well as an exploratory study
on the application of the horizontal visibility to time-series of streamwise velocity
are also provided. Finally, in Section 5.4, the visibility algorithm is exploited to
study the dispersion of a passive scalar plume emitted by an elevated source in
a turbulent boundary layer. Experimental measurements of velocity and passive
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scalar concentration are performed in a turbulent boundary layer over a rough-
wall, which is intended to represent the dispersion process of a passive scalar in
the atmospheric boundary layer. In particular, classical statistics of concentration
and turbulent transport are given in Section 5.4.1, while the behaviour of network
metrics are provided in Sections 5.4.2 and 5.4.3.

5.2 Time-series structure in the view of network
metrics

Since its introduction for mapping time-series into networks, the visibility al-
gorithm has succeeded in a large variety of research fields, owing to its ability
to preserve structural information of time-series in the topology of the associated
visibility graphs [121, 174]. For example, periodic time-series are converted into reg-
ular networks, namely graphs where nodes have constant degree centrality values
related to the periods of the series. Uncorrelated and random series, instead, are
mapped into exponential random graphs, that is, random networks with decreasing
exponential degree distributions [97, 124].

In general, if two different time-series are compared, they can differ in several
ways. In this analysis, we focused on the presence of peaks and irregularities, mainly
for two reasons. First, the occurrence and temporal collocation of extreme events
(i.e., peaks) and irregularities represent some of the fundamental features to charac-
terize turbulent flows. Second, the visibility graph is a suitable method to evidence
this kind of flow properties and translate them into the network topology [175].
More in detail, a point of a time-series, s(ti), is said a peak if it is a local (or global)
maximum of s(ti), with order of magnitude comparable with the maximum excur-
sion of the series, ∆s = (maxi [s(ti)] − mini [s(ti)]). Peaks generally have higher
probabilities to connect to other points in the series, because obstacles to the vis-
ibility are avoided from higher positions. Therefore, the most important nodes
(i.e., the hubs) for a visibility-network are associated with positive peaks in the
series, because very high values are more likely to see other nodes (i.e., hubs have
a better visibility). On the other hand, irregularities are temporal variations with
order of magnitude much smaller than ∆s, and defined as local barriers decreasing
the visibility of the surrounding points. To grasp the concept, Figure 5.1 shows
four basic examples of time-series and the corresponding networks, G. Time-series
s(ti)(a),(c) (Figure 5.1(a),(c)) are clearly more regular than the series s(ti)(b),(d) (Fig-
ure 5.1(b),(d)). Moreover, s(ti)(c) and s(ti)(d) have three peaks (for ti = 1, 50, 100)
while series s(ti)(a) and s(ti)(b) display two peaks (for ti = 1, 100). Therefore, while
the networks G(a) and G(c) are well organized in clusters (one cluster for G(a), two
for G(c)), G(b) and G(d) appear more complex. This happens because in G(b),(d) there
are many nodes with low visibility due to the presence of irregularities.

It must be emphasized that we refer to peaks as the local (or global) highest
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Figure 5.1: Four examples of time-series with different temporal features and corre-
sponding visibility network representations (obtained through the OpenOrd layout
algorithm [130]). In panels (a) and (b), the green-coloured dot indicates the point
s(ti = 34), while yellow points highlight its first neighbourhood, Γ1

34. In panels (c)
and (d), the green-coloured dot evidences the point s(ti = 50).

positive values in the series, but this does not necessarily imply that peaks also
correspond to outliers, i.e. very large values with respect to a local subset of data.
On the contrary, outliers typically correspond to peaks. To clarify this concept,
in Figure 5.2, two simple examples of time-series (illustrated as black stems) are
mapped into visibility networks, where nodes and links are depicted as red dots
and blue lines, respectively. In the illustrative time-series of Figure 5.2(a), outliers
are not present and peaks correspond to nodes ti = {2, 4, 7, 9}; in Figure 5.2(b),
instead, peaks correspond to outliers, namely nodes ti = {2,15}. Furthermore,
it is worth highlighting that the visibility criterion emphasizes the positive peaks,
but not the negative ones. Consequently, when the series mainly display pits (i.e.,
negative peaks) instead of positive peaks, it is possible to exploit the Eq. (4.1)
(or the Eq. (4.2) for the horizontal visibility) to build visibility networks from the
complementary series, −s(ti). The comparison of the metrics extracted from the
original series, s(ti) and its opposite, −s(ti), allows one to characterize the peak-pit
asymmetry in the series [176], namely if peaks are mainly positive or negative.

Among all the metrics available to analyse complex networks, the (average)
mean link-length, dt, the assortativity coefficient, r, and the transitivity, T , turned
out to be the metrics that better capture the temporal structure of the time-series
in terms of peaks and irregularities, inheriting important features of the turbulent
flow dynamics. In what follows, details on each metric and its relation to the
temporal structure of the signals are provided, by highlighting the metric meaning
in terms of peaks and irregularities.
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Figure 5.2: Examples of two intervals of time-series, (ti, si), and corresponding
visibility networks highlighting (a) peaks and (b) outliers. Nodes and links are
depicted as red dots and blue lines, respectively. (a) First 10 observations of a
series extracted from a uniform probability distribution in the interval [0,1]. (b)
First 20 observations of a series extracted from a uniform probability distribution in
the interval [0,1], with periodic spikes (every 14 instants, ti) uniformly distributed
in the interval [0,100]. The values of si in the vertical axis are not shown due to
the invariance of visibility algorithm to affine transformations.

5.2.1 Transitivity analysis
The transitivity, T , is the first metric focused (see Eq. (3.8)). We recall that

each pair of nodes (j, k) ∈ Γ1(i) (where Γ1(i) is the first neighbourhood of node i)
always forms a connected triple with node i (e.g., see Figure 3.6). Therefore, the
total number of triples in the network depends on the size of all the neighbourhoods
Γ1(i), because more neighbours a node has, more triples it activates. On the other
hand, triangles are formed only if the nodes (j, k) ∈ Γ1(i) are also linked to each
other, that is, if Ai,j = Ai,k = Aj,k = 1. In general, connections between nodes
separated by short time intervals are the most probable ones, because (differently
from random signals) time-series of physical quantities are not expected to sharply
change in time. Therefore, nodes that are close in time are more likely to form
triangles. If two neighbours (j, k) ∈ Γ1(i) are far in time, instead, there are many
nodes in between j and k so that there is a high probability to find a node that
obstructs the inter-visibility of j and k. As a result, the total number of triangles
and triples, and therefore the transitivity, strongly depend on the inter-visibility of
nodes inside each neighbourhood.

The transitivity can be then interpreted as a measure to characterize the typical
convexity properties of a signal on some small-to-intermediate time-scales [177]. For
example, in Figure 5.1, any point in the ranges ti = (1 − 50) and ti = (51 − 100) of
s(ti)(c) (see Figure 5.1(c)) has basically the same inter-visibility of corresponding
points in s(ti)(a) (see Figure 5.1(a)), namely there are no substantial local changes
of regularity between s(ti)(a) and s(ti)(c). As a consequence, the value of transitivity
of G(a) and G(c) are expected to be scarcely affected by different occurrence of peaks.
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To show that, Figure 5.3(a) reports the values of transitivity (green bars) for the
four visibility network shown in Figure 5.1. As evident, T(a) and T(c) are actually
almost the same, being equal to 0.72 and 0.73, respectively. The presence of more
(or less) peaks in a time-series then does not significantly modify the short-term
inter-visibility (i.e., the transitivity) of nodes. In fact, also T values of G(b) and
G(d) are almost equal (see the T values in Figure 5.3(a)), being the irregularities of
time-series s(ti)(b) and s(ti)(d) very similar.

T

T

(b)(a)
Degree, k(i)

Mean link length, dt(i)

Figure 5.3: (a) Bar plot of the transitivity (green) and average mean link-length
(orange) values for the four time-series of Figure 5.1. (b) Degree centrality and
mean link-length values of the nodes of the network shown in Figure 5.1(a).

On the contrary, the time-series s(ti)(b),(d) clearly display irregularities if compared
with time-series s(ti)(a),(c). The inter-visibility among neighbours of a generic node
is obstructed because of the irregularities in the time-series. As a paradigmatic
example, we consider an arbitrary node, e.g. i = 34, and its first neighbour-
hood, Γ1(34), highlighted as a green-coloured and orange dots, respectively, in Fig-
ure 5.1(a),(b). While in G(a) the neighbourhood Γ1(34) includes either short-term,
medium-term, and long-term links, in G(b) the neighbourhood Γ1(34) includes only
short-term and long-term connections. Therefore, the number of triangles (rela-
tive to the number of triples) in which is involved a generic node (e.g., i = 34)
is generally lower in irregular networks than in regular ones. As a result, the val-
ues of transitivity T(b) and T(d) are much lower than T(a) and T(c), as observed in
Figure 5.3(a).

Summarizing, the transitivity is much more affected by local variations due
to the presence of irregularities rather than the presence of local peaks in the
series. In terms of flow dynamics, the transitivity is related to the presence of local
fluctuations between consecutive peaks. Recalling that the visibility algorithm is
insensitive to the mean and standard deviation values of the mapped signals, the
transitivity is thus a net measure of the intrinsic fluctuation level of the time-series.
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5.2.2 Mean link-length analysis
The second metric considered is the mean link-length, dt, (where the • notation

indicates the average over all network nodes, see Eq. (3.13)) or equivalently its
inverse metric that is the average peak occurrence, φ = 1/dt. If peaks often occur
in a series (as in Figure 5.1(c),(d)), points far from each other are not visible because
far connections are hampered by peaks, and dt is consequently strongly reduced.
The visibility of a generic node in the networks G(c) and G(d) is limited by the peak at
i = 50 (green-coloured dot in Figure 5.1(c),(d)), which in turn divides the networks
into two main clusters (see the network representations in Figure 5.1(c),(d)). The
value of dt(c) and dt(d) are indeed much lower than dt(a) and dt(b), respectively, as
reported in Figure 5.3(a). On the other hand, dt is not essentially affected by the
irregularities of a series. Irregularities mostly prevent medium-term connections
than short and long-term links but, averaging over all nodes in the network, a
value of the order of medium-term links is generally obtained for dt. In fact, in
Figure 5.3(a) the value of dt(b) is approximately equal to dt(a), and dt(d) is almost
the same of dt(c), indicating that there are no relevant changes in the global mean
link-length due to irregularities. Therefore, large dt values correspond to hubs in
the network and peaks in the series, as peaks activate long-range links (i.e. farther
temporal horizons).

It should be noted that, although the degree centrality, K, is usually adopted as
the metric to characterize hubs, the mean link-length reveals to be a more reliable
metric than degree for the temporal characterization of peaks in visibility networks.
For example, in the series shown in Figure 5.1(a) (which is a bowl-like series with a
minimum value), the nodes in the range ti = (25−75) have maximum degree values
as illustrated in Figure 5.3(b), but they are not the peaks of the series (which are
nodes ti = 1, 100). This is due to the fact that the series reported in Figure 5.1(a) is
fully convex only in the range ti = (25−75), while the long-range visibility of peaks
(i.e., ti = 1, 100) is obstructed by the points in the surroundings of peaks (e.g., nodes
at ti = (2 − 25) or ti = (75 − 99)), thus creating local barriers to the visibility of
lower points of the series. On the contrary, as illustrated in Figure 5.3(b), the mean
link-length is able to capture the presence of peaks in the series, since the highest
dt(i) values correspond to the maximum values in the series. In visibility networks,
therefore, hubs can be better identified as nodes with long-range horizons (i.e., high
dt values), rather than nodes with high degree centrality. It is also worth noting
that while the kurtosis is an estimation index of extreme values in a PDF, the mean
link-length quantifies the average temporal distance between extreme events (while
the PDF is invariant to the temporal structure of the signal).

To conclude, the (average) mean link-length, dt, (or φ = 1/dt) is strongly in-
fluenced by the occurrence of peaks in time (horizontal separation), being slightly
affected by the irregularities. The mean link-length represents a characteristic
temporal distance between two visible data in a series (while φ is a characteristic
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frequency), thus indicating how isolate and sporadic extreme events are. In par-
ticular, low dt (i.e., high φ) values are obtained when the recurrence of peaks is
high.

5.2.3 Assortativity analysis
Although the mean link-length (or the average peak occurrence) is sensitive to

the appearance of peaks in time (horizontal separation), it does slightly take into
account the relative intensity of peaks compared to all the other values in the series
(vertical separation).

To address this issue, we also investigated the assortativity coefficient, r (see
Eq. (3.9)). We recall that positive r values are obtained when nodes are linked
with other nodes of similar degree and the network is said to be assortative, while
the network is said to be disassortative if r < 0, or non-assortative if r = 0.
When peaks are focused, the assortativity coefficient quantifies the extent to which
peaks (that are expected to have more visibility) are more prominent with respect
to small fluctuations (which are expected to have less visibility). Highly positive
values of r indicate that peaks are slightly pronounced with respect to the other
values in the series (e.g., Figure 5.2(a)), while strongly negative values of r indicate
a substantial presence of outliers (e.g., Figure 5.2(b)). Being the degree centrality,
K, a direct measure of the visibility of nodes, it can concurrently account for both
the recurrence of peaks and the presence of irregularities. In other words, the
average degree, K, combines the features of both the transitivity, T , and the mean
link-length, dt, in a single global metric. Therefore, due to its intrinsic definition,
the degree variation in general cannot be univocally related to a specific temporal
feature (either peaks or irregularities occurrence). However, since K is able to retain
information on both large and small fluctuations, it represents a suitable metric to
evaluate the assortativity coefficient (which quantifies the relative intensity between
large and small fluctuations).

In conclusion, the assortativity coefficient, r, is a measure of the vertical sepa-
rations in the series, that is how intense peaks are with respect to the other data
in the time-series.

5.2.4 Combining the network metrics
From the metric interpretation provided so far it emerges that the visibility

algorithm turns out to be able to capture three main features of the temporal
structure of a series: the recurrence and the relative intensity of peaks, as well as
the presence of irregularities. Specifically, for the peaks characterization, dt (or φ)
and r are able to highlight the horizontal and vertical temporal structure of the
signals, respectively. By combining the behaviours of the selected (global) metrics,
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Table 5.1: Scheme of the ways two time-series, s(1) and s(2), can differ and corre-
sponding behaviours of the global network-metrics, T , dt and r.

Cases Temporal structure features Metric
behaviours

Series
s(1)

Series
s(2)

Case A Peaks occur more frequently in s(2)
than in s(1)

T(2) ≈ T(1),

dt(2) < dt(1)
(φ(2) > φ(1))

Case B The series s(2) is more irregular than
the series s(1)

T(2) < T(1),

dt(2) ≈ dt(1)
(φ(2) ≈ φ(1))

Case C Peaks occur more frequently in s(2)
than in s(1), and s(2) is more irregular

than s(1)

T(2) < T(1),

dt(2) < dt(1)
(φ(2) > φ(1))

Case D Peaks occur less frequently in s(2)
than in s(1), and s(2) is more irregular

than s(1)

T(2) < T(1),

dt(2) > dt(1)
(φ(2) < φ(1))

Case E The series s(1) display (positive) peaks
while the series s(2) display outliers

r(2) < r(1),
r(1) > 0, r(2) < 0

it is possible to provide a comparative temporal characterization of different time-
series.

First, the transitivity and the mean link-length are focused. From the per-
spective of these two metrics, a series can differ from another series through a
combination of the metrics behaviours, namely T and dt can increase, decrease, or
remain almost constant. Excluding the last combination, i.e. the one in which both
T and dt are almost constant (i.e., the two compared time-series share the same
temporal features), four different cases can occur. These four cases are labelled as
A, B, C, D in Table 5.1, which also reports the metric behaviours and illustrative
examples of time-series. Therefore, given the behaviours of T and dt, it is possible
to infer from Table 5.1 how time-series differ in terms of irregularities and peak
occurrence, respectively.

For each of the four cases A-D reported in Table 5.1, the assortativity coefficient
can be evaluated in order to characterize the vertical separation of the signals. As
a rule of thumb, r = 0 discriminates between the prominence of peaks (i.e, r > 0)
and the prominence of outliers (i.e., r < 0); this feature is indicated as the case E
in Table 5.1. If the network is non-assortative (i.e., r ≈ 0), in general neither peaks
nor outliers are expected to be prominent. However, if two signals are compared,
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it can be inferred that the signal showing r ≈ 0 is more likely to have outliers or
peaks than the signal with r > 0 or r < 0, respectively. In terms of extreme events,
hence, φ or dt are more reliable to detect the occurrence of peaks in the series, while
r is able to discern between peaks (in which r is generally positive) and outliers
(in which r is generally negative) in a time-series. For instance, in Figure 5.2(a),
φ = 0.230 and r = 0.22, while in Figure 5.2(b) φ = 0.156 and r = −0.19. These
values are evaluated as described in the caption of Figure 5.2. Moreover, large
values of φ indicate that the corresponding series has many peaks, which appear as
outliers only if r decreases towards negative values.

To summarize, the metrics, T , φ (or dt) and r, should be analysed in pairs in
order to infer the temporal structure of time-series evaluated at different spatial
locations.

5.3 Analysis of velocity time-series in turbulent
channel flows

In this Section, the metric interpretation about the temporal structure of the
signals provided so far is exploited to investigate velocity time-series in a turbulent
channel flow at Reτ = 1000 (full details of the DNS are reported in Appendix B.2).
Velocity time-series are adopted to build the corresponding networks as the velocity
field is one of the most intuitive quantity to characterize a fluid flow. However, the
visibility graph method can be applied to other quantities of turbulence interest,
such as the Reynolds shear stress, the kinetic energy, or the vorticity field. In order
to illustrate the potential of visibility networks to inherit the temporal structure of
a signal, the streamwise velocity component, u, is firstly focused in Section 5.3.1.
A comparison of the results for the three velocity components, (u, v, w), is given in
Section 5.3.2, while complementary results are provided in Section 5.3.3.

It should be emphasized that, in what follows, the metric behaviours are only
shown as a function of the wall-normal coordinate, y+, as the metrics are averaged
over the homogeneous directions, x and z. In fact, y is the only direction where
spatial inhomogeneities develop, while the velocity field is statistically homogeneous
along x and z. Since network measures inherit the properties of the mapped time-
series, also the global metrics (i.e., averaged over the nodes of each network) are
assumed to be statistically homogeneous in the x-z directions. Therefore, the results
provided in this section (in terms of dt, T , r and K) are intended to be averaged
in the homogeneous directions without any further specification.

5.3.1 Wall-normal behaviour of network metrics
The behaviour of the network metrics as a function of y+ for the streamwise

velocity time-series is shown in Figure 5.4. Each metric substantial varies along

64



5.3 – Analysis of velocity time-series in turbulent channel flows

Figure 5.4: Wall-normal behaviour of the average metrics for u in the turbulent
channel flow, reported in a log-linear plot. (a) Mean link-length; (b) transitivity;
(c) assortativity coefficient; (d) degree centrality. Three representative values at
y+ = {0.017, 15.4, 996.3} are also highlighted as black circles.

the wall-normal direction, exhibiting clear and regular trends. The four metrics
have overall similar behaviours, rising from the wall up to a maximum value, then
decreasing and, finally, barely changing towards the center of the channel. In more
detail, the maximum values of the metrics are not exactly at the same y+ values,
but they are quite close in the range y+ ≈ 4 − 20. To infer the temporal structure
of time-series along the wall-normal coordinate, we start from time-series close
to the wall and then proceed towards the center of the channel. In particular, we
focus on three representative y+ stations, i.e. y+ = {0.017, 15.4, 996.3} (highlighted
with black circles in Figure 5.4). To better illustrate the network meaning, three
time-series are also extracted at the selected y+ stations; the series are shown
in Figure 5.5 with their corresponding graphical (topological) representation. In
particular, in order to compare the signals at different y+, the time-series of the
streamwise velocity, u, are normalized by subtracting their mean value and dividing
by their standard deviation (this normalization is indicated as u∗).

Moving from y+ = 0.017 to y+ = 15.4, Figure 5.4 shows that the transitivity,
T , and the assortativity coefficient, r consistently increase, while the average mean
link-length, dt, and the average degree, K, decrease. This combination of met-
rics corresponds to the cases D-E in Table 5.1 (where s(2) and s(1) correspond to
time-series at y+ = 0.017 and y+ = 15.4, respectively). A time-series extracted at
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Figure 5.5: (a)-(c) Normalized time-series, u∗, and corresponding graphical repre-
sentation at the grid-points Xi = 1601, Zi = 750 and y+ = {0.017, 15.4, 996.3}.
The choice of the coordinate in the homogeneous directions, x and z, is arbitrary.
(d) Sketch of the channel setup in a (x-y) plane; colours refer to values of streamwise
velocity fluctuations, u′.

y+ = 15.4 is then expected to be (on average) more regular than a series extracted
at y+ = 0.017 (indicated by the growth of T ), with a more frequent occurrence
of peaks (indicated by the drop of dt), which appear more as peaks than outliers
(indicated by the increase of r). The reduction of the average degree, K, suggests
that the increasing occurrence of peaks affects the global visibility more than the
reduction in the irregularities. Looking at the time-series extracted at y+ = 15.4
(Figure 5.5(b)), it is indeed with more peaks than the series extracted at y+ = 0.017
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(Figure 5.5(c)). This aspect is also evident in a more clustered topology of the
network built on the time-series at y+ = 15.4 (see network representations in Fig-
ure 5.5(b)-(c)). Although the regularities appear globally similar, a zoomed view
of the signals reveals that the time-series at y+ = 0.017 appears more irregular, as
indicated by the transitivity.
Concerning the vertical separation, the assortativity coefficient is always positive
(see Figure 5.4(c)), thus indicating that outliers are not likely to appear (as evi-
denced in the time-series of Figure 5.5(a)-(c)). Moreover, the maximum of assor-
tativity coefficient, r, is found at y+ ≈ 20, which is at an intermediate location
between the minimum kurtosis value (that is at y+ ≈ 15) and the local minimum
of skewness (that is at y+ ≈ 30) [178]. The assortativity coefficient as well as the
mean link-length, therefore, are able to retain combined information on higher-order
statistics.

From y+ = 15.4 to y+ = 996.3 (i.e., close to the center of the channel, H), all
the average metrics decrease. The specific combination of transitivity and mean
link-length corresponds to the case C in Table 5.1 (as both metric values diminish).
Accordingly, we expect that a time-series extracted at the center of the channel is
(on average) less regular than a series at y+ = 15.4 and with a more frequent
recurrence of peaks. This behaviour can be clearly seen in Figure 5.5 where the
time-series at the center of the channel (Figure 5.5(a)) is more fluctuating than the
time-series at y+ = 15.4 (Figure 5.5(b)), and the corresponding network appears
more clustered and disordered. It is interesting to note that from y+ ≈ 102 to
the center of the channel, all the four metrics barely change. Therefore, most of
the variations of the network structure are present in the inner layer (y+ ≤ 102),
namely the most affected region by the presence of the wall.

It is important to remark that the behaviour of a single metric is not a sufficient
information, but a combination of two metrics, e.g. (T , dt) or (r, dt), instead,
determines how two time-series differ in terms of irregularities and recurrence of
peaks or vertical separation and horizontal separation, respectively. Moreover,
we do not refer to the specific value assumed by the metric, but the analysis is
comparative as it focuses on the trend each metric assumes as a function of the
distance from the wall. Specifically, comparing a time-series at the wall to one at the
center of the channel, peaks are expected to be remarkably closer for y = H, while
irregularities do not substantially change (dt decreases while T slightly increases).
In fact, as shown in Figure 5.5(a), in the center of the channel peaks occur more
frequently but the irregularity between them remains basically unvaried. However,
this trend is not monotonic along y+, since the time-series locally (around y+ =
15.4) change their regularity. In terms of the network topology, close to the wall the
network is composed by different sub-networks (see Figure 5.5(c)), corresponding to
the peaks of the series, which are widely connected with each other and internally.
Going towards y+ = 15.4 (see Figure 5.5(b)), the simultaneous decrease of dt and
increase of T mainly break down long connections among the sub-networks. The
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Figure 5.6: Cumulative degree distributions, P (K), for the u-based visibility net-
work, averaged over the homogeneous directions. The distributions close to the
vertical axis (highlighted in the inset) correspond to networks built on shuffled
time-series (similar colours refers to similar y+ values). The slopes of the distri-
butions are (−1.01, −1.08, −2.85, −2.86) · 10−2 from y+ = 0.017 to y+ = 996.3,
respectively; the slope for the shuffled series is about 2 · 10−1. The coefficient of
determination, R2, of the fittings is always above 0.99.

drop of dt plays a major role here, acting to split long-term links. The subsequent
decrease of both dt and T (from y+ = 15.4 to 996.3) breaks principally intra-network
connections. At this stage, the prevailing effect is locally induced by the increase of
irregularity, which leads to a ramification of each sub-network (see Figure 5.5(a)).

Degree centrality and its probability distribution. Although it is just used
as a measure of the relative intensity of irregularities and peaks, a comment on
the degree centrality can be eventually carried out. Since the average degree is
proportional to the link density in an undirected network (see Eq. (3.4)), a high
value of K indicates a globally convex time-series, while low values indicate a strong
fragmentation of the visibility network [177]. As a result, considering the behaviour
of K in Figure 5.4(d), towards the channel center the time-series are globally more
fragmented than the time-series close to the wall, confirming what found observing
the trends of T and dt. Besides, the degree centrality can be effectively exploited
to qualitatively estimate the (linear and non-linear) temporal dependences existing
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in a time-series, by means of the degree probability distribution [122]. Figure 5.6
shows the cumulative degree distributions, P (K), in a semi-log plot for networks
built at four representative y+. As for the metrics shown in Figure 5.4, the degree
distribution is computed for each network at each grid location, and all the com-
puted distributions are then averaged over the homogeneous directions. As evident
from the Figure 5.6, the tail of the distributions reveals decreasing exponential
trends, namely the highest degree values (corresponding to the network hubs) are
generally very infrequent. In particular, the exponent of the fitting of the P (K)
increases (in modulus) from the wall towards the center of the channel, y+ = 1000.
This is consistent with the temporal integral scale measurements [179], which de-
crease from the wall to the center of the channel. However, it should be noted that,
differently from the horizontal visibility algorithm, the behaviour of the degree dis-
tribution for the natural visibility algorithm also depends on the PDF of the mapped
time-series [123]. Therefore, in order to isolate (from the PDF contribution) the
net impact of (linear and non-linear) dependences in the turbulent time-series, we
built four series by shuffling four velocity time-series (at arbitrary (x, z) locations)
at the same wall-normal distances considered, i.e., y+ = {0.017, 15.4, 106.2, 996.3}.
As shown in Figure 5.6 (and highlighted in the inset), the slopes of P (K) from
the shuffled series are substantially steeper than the turbulent time-series. This
demonstrates the key role of the (linear and non-linear) correlation aspects of the
turbulent series.

Summary and network metrics in the view of the flow dynamics. In sum-
mary, we have pointed out the ability of the visibility-based networks to shed light
on the temporal structure of the corresponding mapped time-series. Indeed, the
temporal features of the series are actually as predicted by combining the network
metrics. Through the behaviour of the metrics along the y+ direction, Figure 5.4
yields first important results on the presence, dislocation and intensity of extreme
events and irregularities of the time-series. This kind of information can enrich
the comprehension of the flow dynamics. To this purpose, now we try to relate
the network metrics with the turbulent flow dynamics, which is responsible for the
time-series behaviour. Looking at the Figure 5.4, three regions are particularly
interesting (i.e. y+ . 7, 7 . y+ . 150, and y+ & 150) where the average metrics
mostly change their trend. It should be noted that the values of y+ delimiting
such regions are very close to the limit values, y+ = 5 and y+ = 100, of the vis-
cous sub-layer and inner layer, respectively. The region for y+ < 5 is characterized
by slow moving fluid and the flow dynamics are dominated by the viscous shear
stresses. The normalized time-series u∗(ti) here can be assumed to roughly share
a similar temporal structure (although their mean and standard deviation values
clearly change along y+). The corresponding metrics (see Figure 5.4) highlight this
behaviour resulting in barely increasing trends. As previously observed, around
y+ ≃ 4 − 7 (which is the upper bound of the viscous sub-layer) the transitivity,
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mean link-length and degree reach their maximum values. In the range y+ ≃ 4 − 7
we expect, in terms of time-series shape, a minimum number of peaks along with
the minimum irregularities. Recalling that all signals are normalized with the local
mean and standard deviation, a possible interpretation is the following. Around
y+ ≃ 4−7, we are approaching the buffer layer (5 < y+ < 30), i.e., an intermediate
region where viscous shear stress starts decreasing while turbulence activity begins
to grow. However, at the very beginning (y+ ≃ 4 − 7), turbulent processes are very
low, thus resulting in a minimum of irregularities that act over a signal that is still
affected by slow temporal variations (i.e., low number of peaks). The combination
of these dynamics reasonably explains the maxima reached by the three metrics
(T , dt and K) around the region y+ ≃ 4−7. The maximum of the assortativity co-
efficient, instead, is located within the buffer layer, where the turbulence activity is
strong and the vertical separation in the signal is low (recall that the kurtosis of u is
minimum within the buffer layer). For y+ ≫ 5 the flow dynamics are more affected
by the Reynolds stresses, and the flow shows a tendency to organize into coherent
turbulent patterns. The structure of the time-series is then affected by turbulent
processes (such as ejections and sweeps), leading to rapid temporal variations. This
behaviour could be recognized in the drop of the average metrics in Figure 5.4. As
y+ further increases (y+ > 100), the turbulent patterns are less affected by the wall
and they can develop in larger structures. However, the coexistence of multiple
scales and the more complicated flow structure seems not to translate into a clear
trend for the network metrics.

5.3.2 Comparison of network metrics for different velocity
components

In order to extend the analysis of the visibility networks to all the velocity
components, (u, v, w), the wall-normal behaviour of the four selected metrics is
shown in Figure 5.7.

In general, the mean link-length, dt, the assortativity coefficient, r, and average
degree, K, measured on the time-series of v and w show trends similar to those of u,
while different trends are obtained considering the transitivity, T . Additionally, the
maximum values of dt, r and K shift towards higher y+ coordinates if the velocity
components u, w and v are focused, respectively.
In more detail, the trends over y+ of dt (see Figure 5.7(a)) for the three velocity
components are similar, but values for the streamwise velocity, u, are overall higher
than those displayed by v and w. The relative difference decreases towards the
center of the channel. The scenario for the assortativity coefficient, r (see Fig-
ure 5.7(c)), and the degree centrality, K (see Figure 5.7(d)), is analogous to the dt.
Differences for the dt, r and K values of the three components are marked close to
the wall, while the metric values tend to coincide approaching the channel center.
This behaviour can be explained by considering that close to the wall the presence
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Figure 5.7: Average profiles of (a) mean link-length, (b) transitivity, (c) assortativ-
ity coefficient, and (d) degree centrality, evaluated from time-series extracted from
the velocity field, (u, v, w).

of the wall itself strongly influences and differently characterizes the flow dynamics
in the three directions of the velocity, and consequently the networks based on the
corresponding time-series are affected. It is remarkable to observe that the values of
assortativity for the networks built on the v component are much lower close to the
wall than the corresponding values of u and w. This is in line with the great differ-
ence in the kurtosis levels between different velocity components, which is stronger
for v and less intense for w and u (e.g., see Ref.s [178, 180]). On the contrary, the
wall effects decrease moving far from the wall (y+ > 100), thus differences among
the metrics built on u, v and w, reduce.

Focusing on the transitivity, T , the metric difference among velocity components
is even more accentuated. In fact, in the region y+ < 100, not only values are
different but also metrics display different trends. In particular, the wall-normal
velocity component, v, is strongly affected by the presence of the wall (recall that
close to the wall the motion corresponds to flow in planes parallel to the wall [4]) and
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this in turn involves the transitivity. For example, spikes with large negative values
can be found in the time-series of v as a consequence of strong events that appear
only in the very near-wall region, revealed by high kurtosis levels [180]. Since these
deep peaks are negative and relatively short, the degree and the mean link-length
of the corresponding networks are barely affected, while the transitivity and the
assortativity are strongly reduced. Towards the channel center, similarly to the
mean link-length dt, the transitivity differences for the three velocity components
tend to reduce.

Figure 5.8: Cumulative degree distributions of the visibility networks built on the
time-series of (u, v, w), and averaged over the homogeneous directions. (a): y+ =
0.0017, (b): y+ = 15.4, (c): y+ = 996.3.

Finally, the cumulative degree distributions, P (K), of the networks built on
the three velocity components, (u, v, w), and averaged over the grid-points in the
homogeneous directions are displayed in Figure 5.8. At fixed positions from the wall
(i.e, y+ = {0.017, 15.4, 996.3), the slope of the three components is pretty similar,
confirming that a steeper decay is present when moving far from the wall (from
y+ = 0.017 to y+ = 996.3). However, it is worth to note that, very close to the wall
(Figure 5.8(a)), the probability to find large values of degree, K, is higher for the v
and w components than for the u, despite the average value K is the highest for u
(see Figure 5.7(d)). Recalling that close to the wall the transversal components are
more affected by the presence of extreme events (as highlighted by the mean link-
length and assortativity in Figure 5.7(a),(c)), high degree values are more likely to
appear for v and w. However, smaller values of K as less probable to appear (see
Figure 5.8(a)), especially in the range K ∈ (100, 800), which substantially affects
the average value, K.

5.3.3 Additional results
Here, further results on the investigation of velocity time-series in a turbulent

channel flow via visibility networks are reported. First, a sensitivity analysis in-
volving the time step of the network metrics is investigated in Section 5.3.1. Later,
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a complementary study on the application of the horizontal visibility algorithm to
the streamwise velocity time-series at two different Reynolds number is provided.

Figure 5.9: Averaged metric behaviours as function of y+ for three different time
sampling of the streamwise velocity time-series, u. The curves are obtained with
n∆t, where the sampling is n = 1 (blue), n = 2 (red), n = 4 (green).

Parametric analysis on the time step

A parametric analysis on the temporal discretization is reported. A change in
the number of time steps directly affects the number of nodes Nv, and consequently
the structure of the corresponding network. We recall that in the main analysis
(Sections 5.3.1 and 5.3.2) the number of nodes was Nv = 4000, with ∆t = 0.0065
(i.e., ∆t+ = 0.3246). Two other time steps, namely 2∆t, and 4∆t, are here con-
sidered, resulting in networks with Nv = 2000 and Nv = 1000, respectively. In
Figure 5.9, the metrics as function of y+ are displayed for the three temporal sam-
plings, n∆t, with n = {1, 2, 4}. Mean link-length and degree centrality are reported
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as scaled with n (namely ndt and nK), to facilitate the comparison between sam-
plings. The transitivity, T , and the assortativity coefficient, r, instead, are not
scaled with n as by definition vary between 0 and 1. It can be observed that, apart
from the specific values reached by the transitivity and the assortativity coefficient,
the metrics behaviour along the wall-normal direction y+ is not sensitive to the
choice of the temporal discretization (i.e., the number of nodes). In other words,
while the specific values of the metrics may change with ∆t, the wall-normal vari-
ation of the network is preserved for the range of ∆t investigated. This implies
that, for example, the maximum values of the metrics occur at the same y+ coor-
dinates as ∆t is changed. Accordingly, the behaviour of the metrics discussed in
Sections 5.3.1 and 5.3.2 are insensitive to the specific time discretization adopted,
considering that ∆t is sufficiently small to preserve the temporal structure of the
signal. Therefore, the visibility graph approach reveals to be a robust method to
map time-series in networks, provided that the temporal recording is sufficiently
long to ensure that the time-series are statistically stationary.

Horizontal visibility networks at different Reτ

To enlarge and conclude the visibility graph analysis of turbulent channel flow,
the horizontal visibility graph – which is the main variant of the natural visibility
algorithm (see also Section 4.2.1) – is employed to map the streamwise velocity
time-series. We recall that the horizontal visibility algorithm satisfies an ordering
criterion (see Eq. (4.2)), so two data, s(ti) and s(tj), are linked if any other in-
termediate data, s(tk) with i < k < j, is smaller than both s(ti) and s(tj). For
instance, Figure 5.10(a) shows an example of time-series (the same reported in
Figure 5.2(a)), while the corresponding horizontal visibility graph is displayed in
Figure 5.10(b). By comparing the two visibility variants, it can be observed that a
lower number of links are activated by the horizontal visibility algorithm (i.e., links
4 − 6, 4 − 9 and 5 − 7 are not active), as the ordering criterion is more restrictive
than the convexity criterion. This implies that, in general, the overall connectivity
in the networks (i.e., the node degree) is much lower for the horizontal visibility
graphs. In particular, slow variations in the signal (e.g., as in the interval 4 − 7
in Figure 5.10(a)) affect the overall connectivity of the horizontal visibility much
more than the natural visibility, resulting in a much lower overall connectivity in
the former case.

Here, three network metrics are focused: the mean link-length, the average
clustering coefficient and the degree centrality. The average clustering coefficient,
C (see Eq. (3.7)), is selected instead of the transitivity because the latter is much
more affected by the overall lower connectivity in the horizontal visibility graphs
than the clustering coefficient. However, both the metrics are indices of the presence
of triangles in the network, so C is associated to the presence of irregularities in the
signal. The behaviour of the selected metrics as a function of y+ is investigated
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Figure 5.10: (a) Example of time-series and (b) network representation of the
corresponding horizontal visibility graph. In (a) nodes are depicted in red, while
visibility lines are illustrated as dashed blue lines.

for the time-series of u in two turbulent channel flows at Reτ = 1000 (i.e., the
same dataset used in the main analysis of Sections 5.3.1 and 5.3.2) and Reτ = 180.
Further details on the simulation at Reτ = 180 can be found in Appendix B.3.

Figure 5.11 shows the wall-normal behaviour of the network metrics. In general,
all the metrics for the highest Reynolds number are larger than the metrics for
Reτ = 180. Moreover, the minimum/maximum values of the metrics occur at
close y+ coordinates for the two Reynolds numbers. These results suggest that the
visibility networks are able to capture the near wall dynamics at different Reynolds
numbers, although the specific values are scaled for different Reτ . More in detail
on the metrics, the (average) mean link-length (multiplied by ∆t+ for comparison
in Figure 5.11(a)) follows a trend as a function of y+ that is similar to that for the
natural visibility graph (see Figure 5.4(a)), for both the Reynolds numbers. Since dt

is a measure of the horizontal separation in the series, the results from the horizontal
visibility are in accordance with those for the natural visibility. It should be noted
that, while for the natural visibility approach only the temporal (horizontal) length
of each link is considered in dt, for the horizontal visibility approach the mean link-
length accounts for the total length of each links (which are intrinsically horizontal).
This conceptual difference, therefore, can lead to variations in the dt behaviour
between the natural and horizontal visibility approaches.

The degree centrality, K, and the clustering coefficient, C, (Figure 5.11(b),(c)),
instead, follows a wall-normal behaviour that is inverse with respect to the natural
visibility (see Figure 5.4(b),(d)). The reason for the inverse behaviour of K and
C with respect to the natural visibility is due to the fact that the link activation
for the horizontal visibility is much more sensitive to slow variation in the signal.
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Figure 5.11: Vertical profiles of the average values of (a) mean link-length (in wall-
units), (b) degree centrality and (c) clustering coefficient from horizontal visibility,
for channel flows at Reτ = 180 and Reτ = 1000.

For example, in Figure 5.10(a) node i = 6 is not linked to node j = 4 because the
value of the series in correspondence of node k = 5, i.e. s(t5), is very close to the
value of s(t6); in the natural visibility, instead, nodes i = 6 and j = 4 are linked
(see Figure 5.2(a)). Therefore, for the horizontal visibility, differently from the
natural visibility, a rapidly fluctuating series (such as signals extracted close to the
channel center) produces higher levels of average degree and clustering coefficient.
Since peaks are more frequent far from the wall (as suggested by Figure 5.11(a)),
it is more likely that links are activated. On the other hand, close to the wall,
the slow temporal variation in the signals of u prevent the horizontal visibility,
so that K decreases as y+ → 0. For the same reason, the clustering coefficient
decreases towards the wall, since a low number of triangles are formed due to the
low connectivity in the proximity of the wall. It is worth noting that the average
degree for high y+ approaches the (analytical) value K = 4, which is found in a
horizontal visibility graph built from a random/uncorrelated time-series [122].

In summary, as for the natural visibility, the horizontal visibility is able to
capture information on the temporal structure of the signals. Although analytical
results are available, the horizontal visibility algorithm (due to its simplicity) retains
less information than the natural visibility, which is then preferred for network-
based investigations. Moreover, even though results shown are not scaled with
any parameter, the analogies between the metrics behaviour at different Reynolds
numbers are promising, thus suggesting a more detailed analysis in future works.
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5.4 Time-series analysis of a passive scalar plume
in a turbulent boundary layer

Besides the application to velocity data extracted from numerical simulations,
the natural visibility algorithm is also employed to experimentally investigate the
dispersion of a passive scalar plume in a turbulent boundary layer. Specifically, we
address the same issue studied by Fackrell and Robins [77] and Nironi et al. [71]
to investigate the spatio-temporal development of a passive scalar plume, emitted
from an elevated point-source of varying size.

Experimental measurements are performed in a recirculating wind tunnel with
rough wall, in which develops a turbulent boundary layer with a free-stream ve-
locity U∞ = 4.94 m/s and a thickness δ = 314 mm. Due to its density similar to
air, ethane (C2H6) is used as a passive tracer. A mixture of air and ethane is con-
tinuously ejected from a L-shaped tube of diameter, Ds, located at a wall-normal
height hs/δ ≈ 0.24. Figure 5.12 shows a sketch of the setup, and an example of
passive scalar concentration time-series with the corresponding visibility network
representation. Two source configurations are selected for two different diame-
ters, Ds/δ = 9.55 × 10−3 (Ds = 3 mm) and Ds/δ = 1.91 × 10−2 (Ds = 6 mm).
Throughout this section, the two source configurations are referred to as D3 and D6,
respectively. Simultaneous measurements of longitudinal and vertical velocity, u, v
and concentration, c, are performed by means of a hot-wire anemometer (HWA)
and a fast Flame Ionization Detector (FID), respectively. All the time-series are
normalized by characteristic velocity and concentration scales so that, in the fol-
lowing, velocity and concentration signals are intended to be adimensional. Full
details on the setup and the measurement procedures are reported in Appendix C.

The acquisition time is set equal to T = 180 s with a samplifing frequency of
1000 Hz, resulting into 1.8 × 105 data (which is equal to the number of nodes,
Nv in the visibility networks). Measurements are performed at different locations
along the three Cartesian directions, (x, y, z). Specifically, data are recorded at
x/δ = {0.325, 0.650, 1.30, 2.60, 3.90} in the streamwise direction. For each x/δ
location, one-point measurements are taken along the vertical (i.e., at fixed z/δ)
and transversal (i.e., at fixed y/δ) directions. Transversal profiles of concentration
and velocity are obtained at y = hs, and at spanwise locations ranging in the interval
z/δ = [−0.6,0.6]. On the other hand, vertical profiles are obtained at z/δ = 0 at
various wall-normal locations ranging in the interval y/δ = [0.096,0.828] (the limits
depend on the estimated size of the plume at a given x/δ). It should be noted that
the minimum coordinate along the wall-normal direction in which measurements
are performed is y = 30 mm, being the surface roughness height equal to 20 mm.
Furthermore, we refer to the near field and the far field as the streamwise locations
closest and farthest from the source, respectively. Therefore, the near and far fields
correspond to locations x/δ = 0.325 and x/δ = 3.90, respectively, while x/δ = 1.30
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Figure 5.12: 3D sketch of the TBL setup in a (x-y) plane. The plume is illustrated
in green, while the horizontal dash-dot line refers to the source axis. A zoomed
view is shown within a dashed box containing the first 5 seconds of a concentration
signal and the corresponding natural visibility network. The symbols are defined
in the main text. Two large-scale eddies of (Eulerian) characteristic size λ are also
depicted as rotating arrows.

is considered as an intermediate location.
In this work, we mainly focus on two quantities to characterize the plume dy-

namics: (i) the concentration field, c, and (ii) the vertical turbulent transport,
v′c′. The principal (classical) statistics of concentration and vertical turbulent
transport are discussed in Section 5.4.1. Vertical profiles of the network metrics
extracted from the concentration and vertical turbulent transport time-series are
then reported in Section 5.4.2 and Section 5.4.3, respectively. The vertical turbu-
lent transport is here investigated as it plays a key role into the interplay between
the turbulence velocity field and the concentration of passive scalar. Moreover, due
to the crucial role played by the wall-normal direction that represents the direction
of spatial inhomogeneity of the flow, the main analysis is focused on measurements
taken at z/δ = 0, namely in the (x, y)-plane normal to the wall and passing through
the source axis.
Complementary results on the transversal profiles of concentration and vertical
profiles of longitudinal turbulent transport are reported in Section 5.4.4. In order
to obtain turbulent transport signals, the Reynolds decomposition is performed for
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velocity and concentration time-series as u′ = u−U , v′ = v−v and c′ = c−c, where
v and c are the (one point) time-averages of v and c, respectively. The effect of the
source size, Ds, on the statistics and the network metrics is emphasized throughout
the following sections of this chapter.

5.4.1 Wall-normal statistics of concentration and vertical
turbulent transport

Previous works (e.g., Ref.s [71, 77]) focused on the influence of the source size
on the one-point concentration statistics, at varying distance from the source. In
a similar way, in this section, classical statistics of concentration, c, and vertical
turbulent transport, v′c′, are shown and their behaviour along the wall-normal
direction, y, is discussed. Specifically, lower order statistics of concentration (i.e.,
mean and standard deviation) are given as a comparison with the current literature;
for the vertical turbulent transport, instead, higher-order statistics are also provided
in order to enrich the benchmark for a dispersing plume in a rough-wall setup.
Indeed, since turbulent transport requires simultaneous measurements of velocity
and concentration, statistics on turbulent fluxes are not always available.

Mean and standard deviation profiles

The vertical profiles of mean and standard deviation of the (normalized) con-
centration are shown in Figure 5.13. The mean concentration profiles are rather
similar for the two source diameters, D3 and D6, except in the proximity of the
source where the plume statistics are affected by the presence of the source. In
fact, the plume sizes – i.e. the transversal and wall-normal spread of the plume –
become much more larger than Ds with increasing x/δ due to the relative disper-
sion (e.g., see Figure 5.12); as a result, the effect of Ds on c becomes negligible for
x/δ ≫ 0. The difference in the standard deviation profiles between D3 and D6 is
more pronounced than for the mean concentration, as an effect of the meandering
of the plume in the proximity of the source. These results are in accordance with
previous studies [71, 77], which show that, while the mean concentration profiles
are almost unaffected by the source conditions, the higher-order statistics show a
high sensitivity on the source size, even at large distances from the release point.
The vertical position, h∗

s, of the actual axis of the plume is also illustrated in Fig-
ure 5.13, for both D3 and D6; h∗

s is defined as the y coordinate of maximum c(y)
value (see Appendix C, Section C.3 for more details on the evaluation of h∗

s). In
fact, since the plume develops in a turbulent boundary layer, it is affected by the
mean shear and by the source wake. While the latter is mainly present very close
to the source, the mean shear acts at any streamwise location and tends to tilt
the plume axis towards the wall. As a consequence, the wall-normal coordinate
of the plume axis, h∗

s, is not exactly at the source axis, y = hs, but h∗
s decreases
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Figure 5.13: Vertical profiles of the mean and standard deviation values of the
concentration, c and σc, at different streamwise locations, for the two source diam-
eters, D = 3 mm and D = 6 mm. The profiles obtained from the reflected Gaussian
distribution of Eq. (C.2) are also shown. The wall-normal coordinate of the source
axis, hs, is illustrated as a horizontal dotted line, while the plume axis height, h∗

s,
is displayed as a blue (red) dashed line for the source D3 (D6).

downstream. Although the values of h∗
s for D3 and D6 should be different, this is

true only in the near field, i.e. where the differences between the plumes emitted
by D3 and D6 are the strongest.

Similarly to the concentration field, we examine here the statistics of vertical tur-
bulent transport, v′c′. Figure 5.14 shows the vertical profiles of mean and standard
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Figure 5.14: Vertical profiles of the mean value of wall-normal transport v′c′ (a)-
(c), and the standard deviation σv′c′ (d)-(f). The profiles are plotted at x/δ =
{0.325, 1.30, 3.90}, for the two source diameters, D3 and D6. The source axis
height, hs, is illustrated as a horizontal dotted line, while the plume axis height,
h∗

s, is displayed as a blue (red) dashed line for the source D3 (D6).
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deviation values of the (normalized) turbulent flux, v′c′. The profiles are reported
at three representative streamwise locations, i.e. in the near field (x/δ = 0.325), in
the far field (x/δ = 3.90), and at an intermediate location (x/δ = 1.30). The verti-
cal profiles of v′c′ – namely the total mass transport – tend to collapse for the two
configurations D3 and D6, as shown in Figure 5.14(a)-(c). This behaviour is more
evident in the far field than in the proximity of the source, as the dependence of the
mean concentration on the source size Ds rapidly vanishes downstream from the
source. The vertical turbulent transport is zero at the plume axis, h∗

s (as an effect
of the mean shear), namely where the vertical concentration gradient is minimum
(see Figure 5.13(a)). Above and below the plume axis, instead, the mean value
of turbulent flux is non-zero (see Figure 5.14(a)-(c)): for y > h∗

s, v′c′ is positive
while, for y < h∗

s, v′c′ is negative. Above the source axis, the passive scalar is
mainly carried out upwards by positive v′ fluctuations; on the other hand, below
the source axis the passive scalar is mainly transported downwards by negative v′

fluctuations. In particular, the maximum/minimum value of v′c′ corresponds to
the maximum of the mean concentration gradient (this is also evident by using the
Boussinesq approximation v′c′ ∼ −∂c/∂z [181]).

As shown in Figure 5.14(d)-(f), the effect of the source size for an elevated source
is instead much more evident for the standard deviation, σv′c′ , rather than for the
mean values – in analogy with what is observed in the concentration statistics – even
at large distances from the source. This is a consequence of the stronger meandering
motion of the plume emitted by the smallest source size, D3, which produces more
variability in the series and the corresponding high intermittency in the dynamics of
vertical turbulent transport (see also the discussion in Section 2.3.2). The maximum
difference of standard deviation between D3 and D6 is present close to the plume
axis in the near field, and such difference strongly decreases by moving downstream
towards the far field due to the weakening of the meandering and the strengthening
of the relative dispersion. By moving in the wall normal direction, σv′c′ decreases
as the plume intensity vanishes away from the source axis.

Higher-order moments of vertical turbulent transport

The behaviour of the higher-order moments of turbulent transport, v′c′, is
here discussed by focusing on the skewness, Skv′c′ , and the kurtosis, Kuv′c′ . For-
mally, they are defined as the normalized third- and fourth-order central moments,
namely Skv′c′ = (v′c′ − v′c′)3/σ3

v′c′ and Kuv′c′ = (v′c′ − v′c′)4/σ4
v′c′ , respectively.

Figure 5.15 shows the skewness and the kurtosis as a function of y/δ for three
streamwise locations (as for the mean and standard deviation shown in Figure 5.14).
The behaviour of the skewness (Figure 5.15(a)-(c)) is similar for the two source con-
figurations D3 and D6 at any x/δ. In particular, Skv′c′ ≈ 0 at the plume axis, while
the skewness is negative/positive below/above the plume axis, because below and
above h∗

s the vertical turbulent transport is mainly downwards (i.e., v′c′ < 0) and
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Figure 5.15: Vertical profiles of the skewness of wall-normal transport Skv′c′ (a)-
(c), and the kurtosis Kuv′c′ (d)-(f), in log-lin scale. The profiles are plotted at
x/δ = {0.325, 1.30, 3.90}, for the two source diameters, D3 and D6. The source
axis height, hs, is illustrated as a horizontal dotted line, while the plume axis
height, h∗

s, is displayed as a blue (red) dashed line for the source D3 (D6).
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upwards (i.e., v′c′ > 0), respectively.
As shown in Figure 5.15(d)-(f), the kurtosis values are greater than three (which
corresponds to normal distribution), thus implying that the PDFs of v′c′ are fat-
tailed distributions (under some circumstances, the PDFs can be well fitted by a
gamma distribution [71]). In particular, Kuv′c′ is minimum at the plume axis at
each streamwise location, as the plume develops around y = h∗

s and extreme events
(with respect to v′c′) are less probable to appear; on the contrary, away from the
plume axis extreme v′c′ values are more probable, as the signals are much more
intermittent. Differently from the skewness, the kurtosis profiles for D3 and D6
are different in the near field (see Figure 5.15(d)), and the difference of Kuv′c′ pro-
gressively reduces towards the far field (see Figure 5.15(f)). This implies that the
meandering affects the behaviour of the standard deviation but also the behaviour
of the kurtosis: the values of Kuv′c′ for D3, in fact, are higher than the values of
Kuv′c′ for D6, namely extreme values are more probable for D3 than for D6.

Spectra and intermittency factor of vertical turbulent transport

Figure 5.16 shows the normalized power spectral density, ˜︁E = Eδ/σv′c′ , of
the signals v′c′, as a function of the normalized wavenumber ˜︁k = 2πδ/λ, where
E(˜︁k) is the power spectral density, λ = u/f is a characteristic turbulent length
scale (see the sketch in Figure 5.12), f is the frequency and u is the (local) mean
streamwise velocity. Spectra are plotted along the source axis, namely for y =
hs. Since the instantaneous plume size, λy,z, depends on the source size and the
spatial location, the relation between λy,z and turbulent length scales, λ, affects the
behaviour of the spectra. Here we focus on the wall-normal direction, i.e., on λy,
but a similar reasoning holds for λz. In particular, the instantaneous plume size λy

is generally smaller for D3 than for D6 in the near field, due to the spatial proximity
of the source; by moving downstream, instead, λy increases and the difference of
λy between D3 and D6 diminishes.

In the near field (see Figure 5.16(a)), the difference of spectral density between
D3 and D6 is larger at small wavenumbers than at high wavenumbers. In fact,
turbulent length scales, λ, larger than the (instantaneous) plume size, λy, contribute
to the (instantaneous) plume meandering motion in the wall-normal direction (e.g.,
see the sketch in Figure 5.12). Therefore, since in the near field λz,D3 < λz,D6, the
differences of ˜︁E between D3 and D6 at low ˜︁k are more evident, because the plume
for D3 is affected by a wider range (λy < λ < λmax, or equivalently, ˜︁kmin < ˜︁k <
2πδ/λy) of turbulent scales. On the other hand, at high wavenumbers (namely,
small turbulent length scales), the spectral density for the two source sizes tends
to coincide, as turbulent scales λ < λy only promote the dispersion of the plume.
The large scale fluctuations – induced by a wider range of turbulent scale in the
near field – progressively weaken towards the far field (see Figure 5.16(b),(c)), so
that the intensity of spectral density decreases with x/δ and approaches the same
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Figure 5.16: Normalized spectral density, ˜︁E, as a function of the normalized
wavenumber, ˜︁k, of the wall-normal turbulent transport, v′c′. Spectra are evalu-
ated at the source axis (y = hs), for D3 and D6, at three streamwise locations: (a)
in the near field (x/δ = 0.325), (b) at an intermediate location (x/δ = 1.30), and
(c) in the far field (x/δ = 3.90).

behaviour at all wavenumbers for D3 and D6. In fact, for increasing x/δ, the
plume size increases (i.e., λy → λmax) and the range of scales for which λ > λy

decreases. In other terms, all turbulent scales tend to contribute to the relative
dispersion of the plume in the far field. Finally, it should be noted that spectra of
vertical turbulent transport normalized by its variance do not show a self-similar
behaviour along the streamwise direction. This is in contrast to what has been
recently reported for concentration series, which show a self-similar behaviour in
the range 0.5 ≤ x/δ ≤ 4 [79].

The last parameter investigated is the intermittency factor. For the concentra-
tion series, an intermittency factor, γc, can be defined as the fraction of non-zero
concentration values, where small γc values correspond to highly intermittent se-
ries [71]. In other words, γc is the fraction of time in which the passive scalar is
measured. In a similar way, here we define the intermittency factor for the vertical
turbulent transport as the fraction of time in which the passive scalar is transported
upwards, γ+ = prob [v′ > 0, c /= 0], and downwards, γ− = prob [v′ < 0, c /= 0], with
(γ+ + γ−) = γc (by definition) and prob [•, •] indicating the joint probability. In
the definition of γ+ and γ−, the velocity fluctuations, v′, impose the sign to the
fluxes while the concentration discriminates between the presence (c /= 0) or the
absence (c = 0) of the plume. Therefore, although the overall intermittency is
governed by the concentration field (i.e., c /= 0 or c = 0), the velocity component
introduces a directionality for the intermittency (namely v′ > 0 or v′ < 0). For
example, the intermittency factor for the portion of the concentration signal shown
in Figure 5.17(a) is γc = 0.44, because there are 22 non-zero values of c(ti) out of
50 values. Among the 22 non-zero values, 14 observations correspond to an upward
motion (i.e., γ+ = 14/50 = 0.28), while 8 observations correspond to a downward
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Figure 5.17: (a) Example of the intermittent behaviour of the concentration signal
(first 50 values) measured at x/δ = 1.30 and y = hs. Blue and red data correspond
to an upward and downward transport, respectively. The corresponding values of
the intermittency factor for the shown time interval are also reported. (b) Intermit-
tency factors of the passive scalar concentration, γc, and wall-normal turbulent flux,
γ+ and γ−, as a function of x/δ along the source axis (i.e., y/δ = 0 and y = hs).

motion (i.e., γ+ = 8/50 = 0.16).
Figure 5.17(b) shows that, at the source axis, the vertical transport is more

intermittent downward (v′ < 0) than upward (v′ > 0), namely γ− < γ+ for both
D3 and D6. Consistently with the results shown in Figure 5.14 and Figure 5.15, at
the source axis the passive scalar is mainly transported upwards (as the plume axis
lies below the source axis). Consequently, the fraction of time in which the passive
scalar is transported upwards, γ+, results to be greater than the fraction of time in
which the passive scalar is transported downwards, γ−. Furthermore, the intermit-
tency factor is always smaller for the source diameter D3 than for D6, whether γc,
γ+ or γ− is considered. This validates the fact that meandering motion is stronger
for the plume emitted by a smaller source, inducing higher intermittency in the sig-
nals. More in detail, in the near field, the values of intermittency factor for D3 and
D6 are different while they approach the same value in the far field, as the effect
of the meandering is replaced by the relative dispersion of the plume. Although a
strong meandering motion is present in the near field, the intermittency factors do
not monotonically increase with x/δ because of the effect of the source proximity
in the near field (as mentioned previously for the mean turbulent transport). A
minimum value of the intermittency is found at x/δ ≈ 1.3, which is also found by
Nironi et al. [71] in the case of γc.
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Summary of the statistical analysis

The study of statistics reveals that the mean value and the skewness are not
substantially affected by the source size, while the standard deviation and the kur-
tosis are sensitive to the emission conditions. The plume meandering – that is
mainly active in the near field of the source – is the main responsible for the differ-
ences in the statistics: a stronger meandering motion produces higher variability
(i.e., standard deviation) and more extreme events (i.e., kurtosis) for the smallest
source size than for the largest source size. Far from the source, the meandering
motion strongly reduces its intensity and the relative dispersion turns out to be
the principal mechanism affecting the plume dynamics. In the far field, therefore,
the statistics approach the same values for the two source sizes. The effect of the
meandering on turbulent transport is also highlighted by the power spectral density
and the intermittency factor of v′c′. Larger values of power spectral densities are
obtained at small wavenumbers for the smallest source size, as a consequence of
a wider range of turbulent scales affecting the plume dynamics. Additionally, the
stronger meandering motion associated with the plume emitted by a smaller source
size induces a more intense intermittency in the signals, namely a lower fraction of
time for which the passive scalar is measured and transported. As for the statistical
moments, the main differences of power spectral density and intermittency between
the two source sizes are large in the source proximity and vanish in the far field.

5.4.2 Visibility-based investigation of concentration time-
series

The results of the visibility network-based analysis applied to the passive scalar
concentration time-series, c, are here reported and discussed. Results of both diam-
eter configurations are shown in Figure 5.18. In particular, the mean link-length, dt

(Figure 5.18(a)-(b)), the transitivity, T (Figure 5.18(c)-(d)), and the assortativity
coefficient, r (Figure 5.18(e)-(f)), are plotted as a function of the normalized wall
normal coordinate (y − hs)/δ, for increasing streamwise locations. Moreover, in
order to highlight the significance of the metrics with respect to the dynamics of
the passive scalar plume, in Figure 5.19 we display two time-series of concentration
(normalized with zero mean and unitary standard deviation) at two wall-normal
coordinates, (y − hs)/δ = 0 (i.e., the source-axis) and (y − hs)/δ = 0.27.

First, the configuration with the smallest source size, Ds = 3 mm (i.e., D3)
is focused. As illustrated in Figure 5.18(a), dt increases by moving away from
the source-axis in the wall-normal direction, and along the streamwise direction
at fixed wall-normal coordinate. The low dt values obtained along the source-axis
suggest that peaks of the passive scalar concentration are frequently detected (e.g.,
see the series in Figure 5.19(a)), because along the source axis the effects of the
relative dispersion of the plume are weak. On the other hand, the mean link-length
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Figure 5.18: Network metrics as a function of the normalized wall-normal coordi-
nate (y − hs)/δ, for different streamwise locations, x/δ, and for D3 (left panels)
and D6 (right panels). (a)-(b) Mean link-length, (c)-(d) transitivity and (e)-(f)
assortativity coefficient.
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(a) (b)

(b)

c* c*

Figure 5.19: First 30 seconds of the time-series of ethane concentration at two
different wall-normal coordinates for D3: (a), at the centreline (y − hs)/δ = 0; (b)
(y − hs)/δ = 0.271. For comparison purposes, the time-series are normalized as
c∗(t) = (c(t) − c)/σc.

increases in the wall-normal direction, because the occurrence of concentration
measurements decreases along y as a consequence of the relative dispersion of the
plume (e.g., see Figure 5.19(b)). Moreover, we found higher dt values by moving
downstream along x for wall-normal coordinates close to the source-axis, because
the plume weakens along the streamwise direction around y = hs. Conversely,
we found lower dt values by moving downstream far from the source axis, due to
the increasing spatial extension of the plume caused by the relative dispersion. In
fact, the average plume size, Λy,z, is larger in the far field than in the near field.
Therefore, it is less likely to find outliers in the signal of c at a given wall-normal
coordinate in the far field than in the near field (e.g., see in Figure 5.18(a) the
difference of dt between x/δ = 0.65 and x/δ = 2.60 for (y − hs)/δ = 0.1).
These outcomes are supported by the investigation of the transitivity, T , and the
assortativity coefficient, r. As shown in Figure 5.18(c) and Figure 5.18(e), the
maximum values of T and r are found along the centreline of the plume. As dis-
cussed for the mean link-length, at the source axis it is more likely to find a high
recurrence of non-zero values of ethane concentration (see Figure 5.19(a)), so that
extreme events appear more as peaks than outliers. On the contrary, far apart from
the source-axis the temporal structure of the series of concentration is dominated
by the intermittency (i.e., long intervals of very low intensity fluctuations), thus
producing very low values of transitivity and assortativity (i.e., the series are domi-
nated by small intensity fluctuations with sporadic outliers). This behaviour can be
observed, for example, in the time interval t ∈ [11,15] and t ∈ [24,30] in the series
of Figure 5.19(b). Following specular trends with respect to dt, the transitivity and
the assortativity coefficient decrease by moving away from the source-axis.

The metrics extracted from the network built on the concentration time-series in
the configuration D6 are shown in Figure 5.18, panels (b),(d) and (f). All the three
metrics highlight the same overall dynamics of the passive scalar plume discussed
for D3. In fact, the minimum value of dt and the maximum value of T and r are
found along the source centreline, while the three metrics increase/decrease moving
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away from the source-axis and along the streamwise direction, as for D3.
By comparing the magnitude of the metrics in the same spatial locations for

D3 and D6, we found lower values of dt and higher values of T and r in the
configuration D6 with respect to D3. This means that, at a fixed spatial location,
the concentration for D6 is characterized by more frequent non-zero measurements,
namely a higher turbulent fluctuating activity is detected. This is due to the fact
that the release emitted by the larger source is submitted to a reduced spatial
range of velocity fluctuations that are able to displace the scalar plume as a whole
(namely, the plume meandering). Therefore, a weaker intermittency is induced in
the concentration signals (measured at fixed locations) for D6 than for D3. It is
worth noting that – for both Ds configurations – the results are asymmetrical with
respect to the source-axis due to the presence of the wall.

Finally, it is worth highlighting that the maximum/minimum values of the met-
rics are not found exactly at the source axis, y = hs, but at a slightly lower wall-
normal coordinate that is the plume axis, y = h∗

s. Furthermore, the values of
assortativity coefficient, r, for the signals of concentration are almost always nega-
tive (see Figure 5.18(e),(f)), while for the velocity signals in the channel flow r is
always positive (see Figure 5.7(c)). This reflects the substantial difference in the
time-series structure between the concentration (which is more intermittent, see
Figure 5.19) and velocity (which varies more regularly, e.g., see Figure 5.5).

5.4.3 Extreme turbulent transport events in the view of
visibility networks

The results from the application of the natural visibility algorithm to the time-
series of turbulent transport, v′c′, are reported in this section. The two config-
urations of source diameter, D3 and D6, are displayed for different downstream
locations, x/δ, and at various wall-normal coordinates, y/δ. Differently from the
analysis of concentration time-series, here the average peak occurrence, φ = 1/dt,
is employed in place of the mean link-length, dt, in order to highlight the spatial
regions in which peaks frequently occur. Additionally, the assortativity coefficient,
r, is also focused so that, by combining φ and r, a characterization of the temporal
structure of v′c′ in terms of extreme events is provided.

The behaviours of the average peak occurrence and the assortativity coefficient
are shown in Figure 5.20 and Figure 5.21, respectively, as a function of the vertical
coordinate, y/δ. In general, φ and r have their maximum values close to the plume
axis, h∗

s (see horizontal dashed lines in Figure 5.20 and Figure 5.21). This means
that, similarly to the concentration field, peaks frequently occur around the plume
axis; however, differently to the concentration field in which r is generally negative,
the vertical separation between peaks and the other data in the series is weak
(since r > 0). This behaviour of the metrics for v′c′ is due to the fact that the
plume is mainly located around the source axis while it meanders and develops
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Figure 5.20: Vertical profiles of the average peak occurrence φ [Hz] based on sig-
nals of v′c′. The profiles are plotted in the near field and in the far field, for D3
(blue marker) and D6 (red marker). The source axis height, hs, is illustrated as a
horizontal dotted line, while the plume axis height, h∗

s, is displayed as a blue (red)
dashed line for the source D3 (D6). The inset at x/δ = 0.325 shows a zoom around
the plume axis.

downstream. The difference in the features of temporal structure of the signals
of v′c′ can be observed in Figure 5.22, which shows segments of time-series of v′c′

measured at x/δ = 0.325 for D3 (Figure 5.22(a)-(c)) and for D6 (Figure 5.22(d)-(f)).
Specifically, high values in the signals are much more frequent (i.e., high φ) and
much less prominent (i.e., high r) around the plume axis (see Figure 5.22(b),(e))
than away from it.

Near field analysis. The effect of the source size, Ds, on the metrics is clearly
visible in the near field (i.e., x/δ = 0.325) and also at intermediate streamwise
distances (i.e., x/δ = 1.30) around the plume axis, where the metrics for D3 have
smaller values than the metrics for D6. The peaks tend to appear more as outliers
(i.e., lower r) and they occur less frequently (i.e., lower φ) for the smallest source size
D3 (see Figure 5.22(b)) than for D6 (see Figure 5.22(e)). Since a plume emitted
from a smaller source diameter is affected by a wider range of turbulent scales,

91



5 – Visibility-based analysis of time-series in wall-turbulence

Figure 5.21: Vertical profiles of the assortativity coefficient r based on signals of v′c′.
The profiles are plotted in the near field and in the far field, for D3 (blue marker)
and D6 (red marker). The source axis height, hs, is illustrated as a horizontal
dotted line, while the plume axis height, h∗

s, is displayed as a blue (red) dashed line
for the source D3 (D6). The inset at x/δ = 0.325 shows a zoom around the plume
axis.

its meandering motion is more intense. The unequal intensity of the meandering
motion between D3 and D6 differently affects the temporal structure of turbulent
transport series in the near field. Since a strong meandering motion induces a high
intermittency in the series, it is expected that two peaks of turbulent transport
are more unlikely to appear close in time (as there must be large fraction of time
in which the passive scalar is not measured). Furthermore, the high variability
(i.e., standard deviation) associated with the meandering motion implies that the
relative intensity of peaks – with respect to the other values in the signal– increases,
namely extreme events appear more as outliers because the time-series between
two peaks is made up of values that are different from the peaks (otherwise the
standard deviation values would be small). It should be noted that the networks
corresponding to locations around the plume axis do not show large negative r
values, as the higher variability in the signals prevent a strong separation between
small values and peaks (which would give r < 0).
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Figure 5.22: Time-series of vertical turbulent transport in the near field, x/δ =
0.325, for the source diameter D3 (a)-(c) and D6 (d)-(f). Signals are plotted at
three wall-normal coordinates, i.e., y/δ = 0.303, y/δ = 0.240 (the source axis),
and y/δ = 0.175. For comparison purposes, the time-series are normalized as
(v′c′)∗ =

(︂
v′c′ − v′c′

)︂
/σv′c′ .

Far field analysis. In the far field (x/δ = 3.90), instead, the vertical profiles of
the two metrics tend to collapse for both source diameter configurations, D3 and D6.
This behaviour is a consequence of the increase of the plume size by moving down-
stream, due to the relative dispersion. In the far field the plume size exceeds the
largest turbulent scales and the mixing of the passive scalar is then fully regulated
by the relative dispersion rather than by the meandering. Therefore, by moving
downstream around the plume axis, the average peak occurrence always decreases
with x/δ, since large concentration values (and in turn high turbulent transport)
are less probable to appear in the far field because of the plume weakening. On
the other hand, for y ≈ h∗

s, the assortativity coefficient first decreases (reaching
a minimum at about x/δ = 1.30) and then increases with x/δ. The behaviour
of the assortativity coefficient is still a consequence of the interplay between the
reducing meandering motion and increasing dispersion of the plume as it evolves
downstream. It is worth noting that the minimum value of r along the source axis
is found at x/δ ≈ 1.3, that is the streamwise location where the plume reaches the
ground and all the intermittency factors are minimum (see also Figure 5.17(b)).
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Wall-normal analysis. By focusing on the effect of the wall normal coordinate,
y/δ, at a given streamwise location, the two metrics tend to decrease by moving
away from the plume axis in the wall normal direction. Low values of φ and r
indicate that, from the point of view of the temporal structures of the series, peaks
occur less frequently and such peaks appear as outliers (e.g., see Figure 5.22(a),(d)
and Figure 5.22(c),(f) for series above and below the plume axis, respectively).
Therefore, the temporal structure of the signals becomes spike-like moving away
from the plume axis along the y direction (see Figure 5.22(a),(c) for D3 and Fig-
ure 5.22(d),(f) for D6). It is worth noting that, similarly to the metrics for the
concentration, in the near field the difference of average peak occurrence, φ, be-
tween D3 and D6 is larger below than above the plume axis (e.g., see the first-left
panel of Figure 5.20). Therefore, the behaviour of φ in the near field indicates
that peaks in the series of D6 are more frequent than for D3 below the plume axis.
This behaviour can be seen, for instance, by looking at the signals shown in Fig-
ure 5.22(c),(f). Since in the near field the effect of the source size is still notable,
the plume for D6 is larger and more tilted towards the wall than for D3 (i.e., h∗

s is
smaller for D6). As a consequence, at a given vertical coordinate below the plume
axis (e.g., at y/δ = 0.175 in Figure 5.22) the temporal structure of the series for
D6 (e.g., Figure 5.22(f)) is less spike-like than for D3 (e.g., Figure 5.22(c)).

Peak-pit asymmetry analysis. Finally, we remark that the visibility algorithm
emphasizes the presence of positive peaks in the signals. However, as shown in
Figure 5.22, there is an asymmetry between positive and negative extreme values
in the series (especially away from the plume axis), as the passive scalar can be
transported by turbulence upwards (v′ > 0) and downwards (v′ < 0). Therefore,
the analysis of φ and r can also be carried out by applying the visibility algorithm to
the signals −v′c′, thus highlighting the temporal occurrence and relative intensity
of the negative extreme values (i.e., pits) of vertical turbulent transport.

The behaviour of φ and r obtained from the series v′c′ (top-visibility) and from
the series −v′c′ (bottom-visibility) are shown in Figure 5.23 and Figure 5.24 for
D3 and D6, respectively. The intersection between the metrics from the top- and
bottom-visibility accurately corresponds to the vertical location of the actual plume
axis, h∗

s, for both the source configurations D3 and D6. In fact, in the plume axis
the vertical turbulent transport is expected to be symmetrical upwards and down-
wards (e.g., see Figure 5.22(b),(e)). On the other hand, the peak-pit asymmetry is
significantly observed in the metric values above and below the plume axis, h∗

s. In
particular, the metrics from the bottom-visibility are always smaller than the met-
rics from the top-visibility when the region below the plume axis is focused, while
the opposite behaviour is found above the plume axis. The assortativity coefficient,
r, for the bottom-visibility does not reach strong negative values for y > h∗

s, in both
cases D3 and D6. This implies that there is not a strong vertical separation between
pits and the other data values in the series of −v′c′, i.e. extreme negative values are
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Figure 5.23: Vertical profiles of (a) the average peak occurrence, φ, and (b) the
assortativity coefficient, r, for the top- and bottom-visibility in the configuration
D3. The source axis height, hs, is illustrated as a horizontal dotted line, while the
plume axis height, h∗

s, is displayed as a dashed horizontal line for both D3 and D6.

unlikely to appear for y > h∗
s (as shown in Figure 5.22(a),(d)). In fact, since most

of the passive scalar is present around the plume axis, for y > h∗
s vertical turbulent

transport is mainly upwards while for y < h∗
s it is mainly downwards.

In order to understand why the average peak occurrence, φ, for the bottom-visibility
is larger than for the top-visibility for y > h∗

s, we recall that the visibility algorithm
is insensitive to the absolute intensity of the data in the series. Therefore, above
the plume axis, the visibility algorithm mostly considers pits in the series as nega-
tive values that are close to zero, because large negative values are very unlikely to
appear. As a result, pits are found to frequently appear in time (i.e., high φ) and
without a strong vertical separation (i.e., high r). On the contrary, the behaviour of
the network metrics below the plume axis is the opposite with respect to the met-
rics above the plume axis, as the series above the plume axis (Figure 5.22(a),(d))
show an opposite temporal structure than the series below the plume axis (Fig-
ure 5.22(c),(f)).
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Figure 5.24: Vertical profiles of (a) the average peak occurrence, φ, and (b) the
assortativity coefficient, r, for the top- and bottom-visibility in the configuration
D6. The source axis height, hs, is illustrated as a horizontal dotted line, while the
plume axis height, h∗

s, is displayed as a dashed horizontal line for both D3 and D6.

To summarize, the respective influence of the meandering motion and the rel-
ative dispersion for different source sizes, as well as the plume weakening with
the streamwise distance from the source, is fully captured by the network met-
rics. Specifically, the average peak occurrence and the assortativity coefficient are
able to highlight the different temporal structures of the series – in terms of peaks
occurrence and their relative intensity – at different spatial locations.

5.4.4 Complementary results
In this Section we report results that are complementary to the main analyses

carried out in the previous Sections 5.4.2 and 5.4.3, for the concentration and
vertical turbulent transport signals, respectively. In particular, the transversal
profiles of the metrics for the concentration time-series, as well as the vertical
profiles of the metrics for the longitudinal turbulent transport are reported and
briefly discussed.
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Figure 5.25: Transversal profiles of the mean and standard deviation values of
the concentration, c and σc, at different streamwise locations, for the two source
diameters, D = 3 mm and D = 6 mm.

Transversal profiles of passive scalar concentration

Additional results are reported for the time-series analysis of the passive scalar
concentration. Differently from the main analysis (carried out in the previous
Section 5.4.2) that focuses on the wall-normal direction, the first two moments of
c as well as the corresponding network metrics, are here described as a function of
the spanwise coordinate, for the two source diameters, D3 and D6.

The transversal profiles of mean and standard deviation of concentration, c and
σc, are illustrated in Figure 5.25(a),(b) as a function of z/δ. We recall that the
meandering motion acts both the in wall-normal, y, and spanwise, z, directions.
Therefore, the mean concentration field (see Figure 5.25(a) and Figure 5.13(a)) is
weakly affected by the source size, except in the proximity of the source. Conversely,
the standard deviation of c is deeply affected by a different source size, either in
the wall-normal (Figure 5.13(b)) and in the spanwise (Figure 5.25(b)) directions.
It can be observed that even at large distance from the source (e.g., see the right
panel in Figure 5.25(b)) σc for D3 is notably higher than σc for D6.
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Figure 5.26: Network metrics as a function of the spanwise coordinate z/δ, for
different streamwise locations, x/δ, and for D3 (left panels) and D6 (right panels).
(a)-(b) Mean link-length, (c)-(d) transitivity.

From the point of view of visibility networks, Figure 5.26 shows the transver-
sal behaviour of the (average) mean link-length, dt (Figure 5.26(a)-(b)), and the
transitivity, T (Figure 5.26(c)-(d)). Similarly to the analysis in the (x-y) plane
(see Figure 5.18), at the source axis (i.e., z/δ = 0) dt and T show their minimum
and maximum values, respectively. Moreover, the network metrics deeply change
by moving away from the source axis, namely by increasing/decreasing z/δ. As
for the wall-normal analysis, dt for the smallest source diameter, D3, is generally
larger than for D6, while T is generally smaller for D3 than for D6. As discussed
in Section 5.4.2, the plume emitted by a smaller source is affected by a stronger
meandering motion, which reflects in more intermittent signals of concentration
(producing larger dt and small T ). However, it is worth highlighting that, differ-
ently from the analysis in the (x-y) plane, maximum and minimum of the metrics
are precisely found at the source axis (z/δ = 0) as there is no effect of the mean
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Figure 5.27: Vertical profiles of the mean value of longitudinal transport u′c′ (a)-
(c), and the standard deviation σu′c′ (d)-(f). The profiles are plotted at x/δ =
{0.325, 1.30, 3.90}, for the two source diameters, D3 and D6. The source axis
height, hs, is illustrated as a horizontal dotted line, while the plume axis height,
h∗

s, is displayed as a blue (red) dashed line for the source D3 (D6).

shear in the transversal (x-z) plane. Furthermore, the behaviour or the metrics
shown in Figure 5.26 is symmetrical with respect to z/δ = 0, since there is not
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a boundary effect due to the presence of the wall in the spanwise direction (for
comparison, see the metric asymmetry in Figure 5.18).

Figure 5.28: Vertical profiles of the average peak occurrence φ [Hz] based on sig-
nals of u′c′. The profiles are plotted in the near field and in the far field, for D3
(blue marker) and D6 (red marker). The source axis height, hs, is illustrated as a
horizontal dotted line, while the plume axis height, h∗

s, is displayed as a blue (red)
dashed line for the source D3 (D6). The inset at x/δ = 0.325 shows a zoom around
the plume axis.

Vertical profiles of longitudinal turbulent transport

Figure 5.27 shows the vertical profiles of the mean value, u′c′ and the stan-
dard deviation, σu′c′ , of the (normalized) longitudinal turbulent flux, u′c′. The
profiles are reported at three representative streamwise locations, i.e. in the near
field (x/δ = 0.325), in the far field (x/δ = 3.90), and at an intermediate location
(x/δ = 1.30). As for the concentration field and vertical turbulent transport, the
mean values of u′c′ are similar for the two source configurations D3 and D6 (see
Figure 5.27(a)-(c)). It should be emphasized the difference in the vertical profiles
of u′c′ with respect to the vertical profiles of v′c′ (see Figure 5.14(a)-(c)). In partic-
ular, above the source axis, positive v′ fluctuations tend to carry the passive-scalar
upwards, resulting in a positive v′c′. On the other hand, negative v′ fluctuations
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Figure 5.29: Vertical profiles of the assortativity coefficient r based on signals of u′c′.
The profiles are plotted in the near field and in the far field, for D3 (blue marker)
and D6 (red marker). The source axis height, hs, is illustrated as a horizontal
dotted line, while the plume axis height, h∗

s, is displayed as a blue (red) dashed line
for the source D3 (D6). The inset at x/δ = 0.325 shows a zoom around the plume
axis.

tend to carry the passive scalar downwards. Since u′v′ < 0 in a TBL (see Fig-
ure C.2(c) in Appendix C), above the source axis u′c′ < 0, while below the source
axis u′c′ > 0. The effect of the source size for an elevated source is much more
evident for the standard deviation, σu′c′ , even at large distances from the source
(see Figure 5.14(d)-(f)). This is a consequence of the stronger meandering motion
of the plume emitted by the smallest source size, D3, which produces more vari-
ability in the series. It is worth to observe that the overall values of σu′c′ are higher
than the values of σv′c′ , thus implying a stronger effect of the plume meandering
in the signals of longitudinal turbulent transport (which are then expected to be
more intermittent).

The application of the natural visibility algorithm to time-series of longitudi-
nal turbulent transport is briefly discussed (similarly to the vertical transport) in
terms of average peak occurrence, φ, and assortativity coefficient, r. As shown
in Figure 5.28 and Figure 5.29, the average peak occurrence and the assortativity
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coefficient extracted from u′c′ show several overall analogies with respect to the cor-
responding metrics for v′c′ (see Figure 5.20 and Figure 5.21). For instance, for both
u′c′ and v′c′, the maximum values of the metrics are found in correspondence of the
plume axis, h∗

s, and the metrics for the largest source, D6, are generally higher than
the metrics for the smallest source, D3. As discussed previously, the difference in
the profiles of the metrics for D3 and D6 is due to a different meandering intensity
in the two source configurations.

However, there are some differences in the intensity and the trend of the two
metrics whether v′c′ or u′c′ is examined. The average peak occurrence, φ, is always
smaller for u′c′ than for v′c′, and this difference is more notable in the near field than
in the far field. The smaller values of φ for u′c′ indicates that peaks are less frequent
than for v′c′. This outcome is in accordance with the fact that, as mentioned above
for the standard deviations, the time-series of longitudinal turbulent transport are
more intermittent than the time-series of vertical turbulent transport. Concerning
the assortativity coefficient, the magnitude of r is similar for both u′c′ than for
v′c′ (see Figure 5.21 and Figure 5.29). However, a closer look at the profiles of r
reveals that the assortativity coefficient is rather higher for the vertical turbulent
transport, v′c′, than for u′c′, implying that outliers are more probable in the signals
of u′c′. This is again in line with the fact that longitudinal turbulent transport
signals are more intermittent than vertical turbulent transport ones.

5.5 Summary and future outlooks
The application of the visibility graph to time-series extracted from wall-bounded

turbulent flows is tackled in this Chapter. First, novel insights are provided into how
the network metrics are affected by the different temporal structure of the mapped
time-series, in terms of irregularities and extreme events. The most suitable net-
work metrics that are able to capture the specific features of temporal structure of
time-series are the mean link-length (or average peak occurrence), the transitivity,
the assortativity coefficient and the degree centrality. Two setups are considered,
namely (i) the velocity field in a (numerically simulated) turbulent channel flow
and (ii) the concentration and turbulent transport of a passive scalar plume in an
experimental turbulent boundary layer.

In the turbulent channel flow, the presence of different topological features
along the wall-normal direction is revealed by different metric trends. In par-
ticular, metrics variations are associated to different flow dynamics (responsible of
the temporal structure of the signals) at various wall-normal coordinates. For the
turbulent boundary layer setup, the analysis of concentration and turbulent trans-
port of passive scalar reveals that the network metrics are significantly affected by
measurement locations and the interplay between the meandering and the relative
dispersion of the plume. Besides, a classical statistical analysis of vertical turbulent
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transport of passive scalar is also provided. In this way, we extend the benchmark
of (one-point) statistics of Nironi et al. [71] and Fackrell and Robins [77] on the
dynamics of a passive scalar plume emitted in a rough-wall turbulent boundary
layer.

Despite several statistical techniques are available to study nonlinear time-series,
specifically regarding turbulence, most of them are invariant under different tempo-
ral structures of the time-series. The visibility-network analysis, instead, reveals to
be a powerful and synthetic tool to handle big-data and to explore specific tempo-
ral features of the mapped series, without losing information about their temporal
structures and also capturing the underlying flow dynamics. In fact, each network
retains the temporal dislocation of important temporal features, such as extreme
events and irregularities. Specifically, in terms of extreme events, the visibility
network-based approach is able to discern between peaks and outliers and their
frequency in the signals. To extract and handle this information is crucial for
a deeper understanding of the flow dynamics, since the most common statistical
tools adopted in turbulence, from spectral analysis to higher-order moments, are
not able to capture the temporal collocation of such phenomena. Our visibility-
based approach demonstrates that complex networks are able to provide important
information about temporal structure of turbulent time-series, either in a numerical
and an experimental setup.

Based on present findings, the proposed procedure can provide the basis for
a novel way to approach time-series of turbulent flows, thus supporting classical
statistical methods in time-series analysis. Future works can involve other turbu-
lent flow configurations as well as data extracted at different Reynolds numbers,
thus investigating the effects of the flow setup and Reynolds number on the scaling
behaviour of the network metrics. Alternative turbulent quantities (e.g., energy
or vorticity fields) can also be employed for mapping time-series in visibility net-
works, to highlight further aspects of turbulence dynamics that could not be easily
unravelled by only focusing on the analysis of velocity components.
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Chapter 6

Turbulent channel flows in the
view of spatial networks

Some of the contents presented in this Chapter have been previously published.
Below are provided the references:

S. Scarsoglio, G. Iacobello, and L. Ridolfi. “Complex networks unveiling spatial
patterns in turbulence”. In: International Journal of Bifurcation and Chaos 26.13
(2016), p. 1650223. doi: 10.1142/S0218127416502230.

G. Iacobello, S. Scarsoglio, J.G.M. Kuerten, and L. Ridolfi. “Spatial characteriza-
tion of turbulent channel flow via complex networks”. In: Physical Review E 98.1
(2018), p. 013107. doi: 10.1103/PhysRevE.98.013107. Supplemental Material
at http://link.aps.org/supplemental/10.1103/PhysRevE.98.013107

6.1 Motivation
The Eulerian approach has historically played a fundamental role for studying

fluid flows, either experimentally or numerically. The idea to measure physical
quantities at fixed spatial locations to extract insights into the flow dynamics, has
paved the way to several fundamental results about the spatial characterization of
turbulence. However, as remarked in Chapter 2, several issues regarding turbulence
(especially if wall-bounded) still remain open.

Among the techniques employed, the correlation coefficient has been extensively
used in the literature to characterize the spatio-temporal dynamics of turbulence.
However, correlation coefficients are usually investigated by averaging their values
in space and time, thus losing part of the spatial information comprised in each cor-
relation matrix. Therefore, in order to advance the level of information of classical
statistics, a spatial network-based approach to study turbulence from an Eulerian
viewpoint is proposed. Although spatial networks based on correlation have been
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6 – Turbulent channel flows in the view of spatial networks

largely studied in the context of climate networks, the application of network anal-
ysis to investigate 3D spatio-temporal turbulent data was not pursued before the
present study. It is worth to note that, in order to build a spatial network, simul-
taneous measurements of physical quantities (e.g., the velocity components) are
required at different spatial locations.

Figure 6.1: (a) High degree centrality node, i, and low degree centrality node, j,
shown together with their first neighbourhoods (Γ1(i) in red and Γ1(j) in blue).
Nodes A and B are at a distance equal to ten grid cells from i and j, respectively.
Time-series of the vorticity modulus |ω(ti)| are both shown for (b) the pair {i, A}
and (c) for the pair {j, B} with the corresponding correlation coefficient, Ci,A = 0.92
and Cj,B = 0.68.

A homogeneous isotropic turbulent flow is firstly investigated by highlighting
high-correlation values in the flow. The main idea is to assign nodes to grid points in
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a spherical region of the total computational domain, and activate links by retain-
ing the highest correlation between turbulent kinetic energy signals (see Ref. [148]
for more details). Despite of the homogeneity and isotropy of the flow, we found
that highly connected nodes (with threshold value equal to 0.9) tend to cluster in
space, evidencing spatial patterns coherently moving with similar vorticity over one
integral timescale. To better grasp the concept, Figure 6.1(a) shows a 3D view of
the first neighbourhoods, Γ1, of a node with high degree centrality, i (green dot),
and another node with low degree centrality, j (orange dot); the neighbourhoods of
i and j are illustrated as red and blue dots, respectively. Other two nodes labelled
as A and B were focused and the vorticity time-series, |ω(ti)|, were extracted at
the spatial locations corresponding to node pairs {i, A} and {j, B}. Nodes A and
B were selected to be at a distance equal to ten grid cells from i and j, respec-
tively (note that A is a neighbour of i). The pair involving the high degree node
presented a strong temporal correlation for the vorticity (see Figure 6.1(b)), while
a weaker correlation was found for the node pair involving the low degree node
(see Figure 6.1(c)). The behaviour of these node pairs is representative of high
degree centrality and low degree centrality regions, since analogous comparisons
were found for many other couples of nodes. Thus, we concluded that high de-
gree centrality values indicate regions with the same instantaneous vorticity, that
is, turbulent patterns coherently moving over the integral timescale. Therefore, al-
though the network was built on the turbulent kinetic energy, the network is able to
capture the spatial information on a higher-order level (i.e., the velocity gradients).

Motivated by the findings reported in Ref. [148], a spatial network-based analysis
of fully-developed turbulent channel flow is pursued to offer an innovative approach
to wall-turbulence. The results provided in the following sections of this Chapter,
therefore, represent a first effort to characterize wall-bounded turbulent flows via
complex network tools.

The Chapter is organized as follows. Section 6.2 reports the details of the
spatial network construction. The main analysis of the spatial network built on
the streamwise velocity component is discussed in Section 6.3. In particular, three
points of view are adopted, namely a global scale (Section 6.3.1), a mesoscale
(Section 6.3.2) and a local scale analysis (Section 6.3.3). Complementary results
are reported in Section 6.4, which includes findings (i) obtained from a different
Reynolds number and for different temporal windows (see Section 6.4.1), and (ii)
from the network built on the wall-normal velocity (see Section 6.4.2). Finally, a
resume of the results and future perspectives are illustrated in Section 6.5.
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6.2 Building the turbulent spatial network
Velocity data from a fully-developed turbulent channel flow – numerically solved

at a frictional Reynolds number Reτ = 180 (full details of the DNS are reported
in Appendix B.3) – are exploited to construct a correlation-based spatial network.
The streamwise velocity component, u, is the principal variable focused to carry
out the network analysis of the channel flow. The u component, indeed, is one
of the most significant variables to characterize a turbulent channel flow (see Sec-
tion 2.2). Besides u, the wall-normal velocity component, v, is also investigated for
comparison in Section 6.4.2. Therefore, in the following, unless otherwise stated,
the procedure and results are intended for the streamwise velocity component.

An example of the procedure carried out to map the spatio-temporal velocity
field in a complex network is illustrated in Figure 6.2: the discretization of the
domain and the velocity field are illustrated in Figure 6.2(a), while the resulting
correlation-filtered spatial network is shown in Figure 6.2(b). In particular, the
spatial network is built – as discussed in Section 4.3.2 – by following four steps:

1. a network node is assigned to each grid point in the domain;

2. time-series of the velocity at each grid point are employed to evaluate the
(Pearson) correlation coefficient, Ci,j, between all pair of nodes;

3. a threshold operation is performed by retaining all the correlation coefficients
(in modulus) greater than a specific threshold value, namely |Ci,j| > θ;

4. a link between two nodes is established if the correlation coefficient between
velocity signals satisfies the previous threshold criterion.

In what follows, each step is discussed in more detail.

Node assignment. The velocity time-series are extracted in Nx = 144, Ny =
191 and Nz = 150 grid points along the streamwise, wall-normal and spanwise
directions, respectively. By assigning a node to each selected grid point, Nv =
Nx × Ny × Nz = 4125600 nodes are obtained. It should be noted that the size and
spatial discretization of the domain in the homogeneous directions are reduced in
order to have a more manageable network size, without substantially affecting the
statistical significance of the results (see Section B.3 for more details). Since the
grid points are not uniformly distributed along the wall-normal direction, nodes
represent an heterogeneous set of spatial entities. Therefore, a weight indicating
its spatial extension is assigned to each node, namely the volume, Vi, represented
by each grid point (e.g., see Figure 6.2(a)). As a result, nodes at different y+

coordinates have different weights equal to Vi(y+) = (∆x · ∆yi(y+) · ∆z). While
in the streamwise and spanwise directions the spacings are uniform (i.e., ∆x and
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6.2 – Building the turbulent spatial network

Figure 6.2: (a) 3D view of the turbulent channel setup. The streamwise velocity
fluctuation, u′, is shown in a (x − y) and a (z − y) section. An example of grid is
also illustrated as black dots, by highlighting two cell volumes, Vi and Vj, in green.
(b) An example of 3D spatial network built from the setup in (a).

∆z are constant), in the wall-normal direction the spacing depends on y+ through
the relation ∆yi = (yi+1 − yi−1)/2. In other words, ∆yi(y+) is calculated as the
sum of the previous, i − 1, and next, i + 1, half-heights of the grid spacing in the y
direction.

Correlation computation. The Pearson correlation coefficients, Ci,j, are
computed for each pair of nodes and for a total simulation time T + = 225, which
corresponds to about 1.5 times the flow through time (L+

x /U+
b , where Ub is the bulk

velocity) and about 11 times the integral time-scale. Specifically, Ci,j is evaluated
by following the Eq. (4.3). In order to speed-up the computation, only half the
correlation matrix is evaluated, due to the symmetry property of Ci,j. Figure 6.3
shows the probability density function (PDF) of the values of the correlation coef-
ficient of u for the turbulent channel flow investigated. The PDF is symmetrical
for small |Ci,j| values, approximatively in the range −0.7 < Ci,j < 0.7. However, as
shown in Figure 6.3(b), for high values of |Ci,j| the fraction of positive correlation
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6 – Turbulent channel flows in the view of spatial networks

Figure 6.3: Probability density function (PDF) of the correlation coefficient values
in a Linear-Linear plot (a) and a Linear-Log plot (b). Blue lines indicate negative
correlations while red lines indicate positive values. In panel (b) a threshold line
for θ = 0.85 is also shown as a orange dashed line.

coefficients is larger than the fraction of negative correlations. It is remarkable to
notice that, although rare, strong negative correlation values are present.

Correlation threshold. In order to activate links between nodes, the corre-
lation coefficient is filtered by retaining its highest values. Constructing networks
by filtering correlation coefficients is a classical technique employed in network anal-
ysis [158, 182]. In this work, both positive and negative high correlation values are
considered by taking |Ci,j| > θ = 0.85. The choice of the threshold is a non-trivial
aspect for correlation-based networks. In fact, a θ value that is too high leads to
extremely sparse networks (see Figure 6.3(b)), in which mainly trivial connections
are unveiled. On the contrary, a too low value of θ results in networks where the
statistical significance of the links is arguable (as there are too many links), thus
making the interpretation of the network structure confused or misleading. Con-
sequently, a reference value of the threshold is chosen as θ = 0.85 to highlight the
strongest (linear) relations between nodes at different spatial locations. In order
to explore the sensitivity of the spatial network to the choice of θ, a parametric
analysis of the results for different threshold values, θ = {0.8, 0.9, 0.95}, is also
reported throughout the results. Therefore, unless purposely stated, the analysis is
intended for the reference case with θ = 0.85 .

Link activation. Links between node pairs – namely, between different spa-
tial locations in the channel domain – are established if the correlation coefficient
values satisfy the thresholding condition, |Ci,j| > θ (e.g., see Figure 6.2(b)). The
choice of a high θ value allows for a total number of links, Ne, that is computa-
tionally manageable. In particular, for θ = 0.85 the number of links in the network
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is Ne = 857693107 ∼ 108 so that the corresponding network edge density (see
Eq. (3.4)) is ϱ ≈ 10−4, as the maximum number of possible edges in a network is
Nv(Nv − 1)/2 ∼ 1012. The value of ϱ is very low, meaning that the network (as
expected) is sparse, which is a common feature in several real-world networks.

To summarize, a spatial network based on the velocity time-series is built. Nodes
represent physical portions of the domain and node weights are proportional to the
cell volume of each grid point. Links indicate intense (positive or negative) correla-
tions between different spatial locations, thus highlighting the spatial structure of
the strongest kinematic similarities (i.e., in terms of velocity) between nodes.

6.3 Multi-scale network analysis of the stream-
wise velocity field

Results of the network analysis are presented in this section to highlight how
the kinematic information spatially flows in the temporal window considered, and
how this kinematic information is organized at three different scales:

(i) Global scale. The overall characteristics of the whole network are investi-
gated (i.e., considering all nodes, without any distinction); in particular, the
network centrality and its assortativity behaviour are explored.

(ii) Mesoscale. The attention is given to the topological features of groups of
nodes; specifically, we study the network metrics as a function of two key
features: the wall-normal coordinate, y+, and the nodes with the highest
centrality index (i.e., the most important ones).

(iii) Local scale. The analysis is focused on single nodes and their relation with
other nodes in the network via shortest paths.

The analysis at different scales allows to characterize the spatial network at
different levels of understanding, from a macro-level that involves the entire network
to the behaviour of single nodes. In this way, it is possible to fully exploit the
potential of complex networks to capture information on the turbulent flow features.

6.3.1 Global scale analysis
The global behaviour of the spatial network is first studied by investigating

the volume-weighted connectivity, Kvw (see Eq. (3.6)). We recall that the volume-
weighted connectivity of a node, i, is bounded in (0, 1] and represents the fraction of
volume connected to i. In other words, Kvw(i) is a centrality metric that quantifies
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the extent to which a spatial region of the domain (identified by a node i) is
positively or negatively correlated with the remaining domain.

First, the probability to find a node with a given value of Kvw is focused. To this
aim, the cumulative probability distribution of Kvw, namely P (Kvw), is shown in
Figure 6.4(a) for the reference case with θ = 0.85. Specifically, we plot 1−P (Kvw) in
order to highlight the tail of the distribution, i.e. the nodes with highest centrality
values. The probability to have higher values of Kvw decreases exponentially, sug-
gesting there is a relatively small number of nodes that are strongly connected with
respect to the other nodes, thus representing the hubs of the network. Therefore,
P (Kvw) can be exploited to classify the centrality of nodes in the network. We refer
to nodes with high Kvw values as a H −Kvw nodes (where H stands for high) if they
satisfy the condition 1−P (Kvw) ≤ 10−2 (corresponding to the 99th percentile). On
the contrary, we refer to nodes with low Kvw values as L − Kvw nodes (where L
stands for low), indicating that they satisfy the condition 1 − P (Kvw) = 99 × 10−2

(corresponding to the 1st percentile). As a result, H − Kvw nodes represent parts
of the domain kinematically similar to large portions of the physical domain, in the
temporal window considered.

Figure 6.4(b) shows the effect of the threshold, θ, on the probability distribu-
tion of Kvw. The cumulative Kvw distribution maintains a decreasing exponential
behaviour for different values of θ, confirming the presence of hubs in the network.
However, the slope of the probability distribution increases (in modulus) for in-
creasing θ values. In fact, since very high correlations are unlikely to appear, the
probability to find higher Kvw values tend to decrease for higher thresholds, θ.

Kvw is a measure of the centrality of nodes in the network, but it is not able to
quantify whether the centrality of a node is similar or not to the centrality of its
first neighbours. To address this issue, an assortativity metric (see Section 3.3.2)
can be exploited based on a centrality metric, which is Kvw in this case. Assor-
tativity metrics, in fact, are able to reveal if nodes tend to link to other nodes
with similar or dissimilar Kvw values. Specifically, two assortativity metrics are
here focused: the average nearest-neighbours connectivity (see Eq. (3.10)) and the
assortativity coefficient (see Eq. (3.9)). The average nearest-neighbours connec-
tivity, Kvw

nn(i), is the average value of Kvw of neighbours of a generic node i. If
Kvw

nn(i) is an increasing (decreasing) function of Kvw(i) the network is assortative
(disassortative). Figure 6.5(a) shows the average nearest-neighbours connectivity,
Kvw

nn(i), as a function of Kvw(i), for each node i in the network. An almost linear
relationship holds between Kvw and Kvw

nn , displaying that most nodes tend to link
to other nodes with quite the same Kvw value, resulting in a strongly assortative
network. This behaviour is corroborated by the assortativity coefficient, which is
equal to +0.84 (in Eq. (3.9) the volume-weighted connectivity is used instead of
the degree). This outcome implies that parts of the domain with (linearly) similar
time-series of the streamwise velocity u (i.e., high correlation coefficients values)
have also similar neighbourhood spatial extensions. In other words, the fraction of
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Figure 6.4: (a) Cumulative Kvw distribution, 1 − P (Kvw), and exponential trend
for θ = 0.85. The inset is a zoomed view for small Kvw values, indicated by the red
box. The ranges of high-Kvw and low-Kvw (shown in the inset) are highlighted. (b)
Cumulative Kvw distribution for different thresholds θ = {0.80, 0.85, 0.90, 0.95}.

volume of the domain highly correlated with a node i and the fraction of volume
highly correlated with each of the first neighbours of i (i.e., the nodes linked to i),
are of the same order of magnitude.
The effect of the threshold value on the assortativity of the network is shown in Fig-
ure 6.5(b). An almost linear relation between Kvw

nn and Kvw holds for the networks
at different θ, namely the correlation-based networks always display assortative
behaviours. In particular, this effect is more evident for higher values of θ, as con-
firmed by the assortativity coefficient values that are equal to 0.78, 0.90 and 0.93
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Figure 6.5: (a) Weighted average nearest neighbours assortativity measure, Kvw
nn(i),

as a function of Kvw(i) for θ = 0.85. Colours indicate the joint probability values
(in log10 scale) of variables Kvw

nn(i) and Kvw(i). The bisector is also displayed as a
black dashed line. (b) Kvw

nn(i) as a function of Kvw(i) for different threshold values
θ = {0.80, 0.85, 0.90, 0.95}.

for θ equal to 0.8, 0.9 and 0.95, respectively.
To summarize, the analysis at global scale points out that hubs are generally

rare in the networks, especially for high threshold values. Additionally, nodes tend
to connect with each others, namely the network is assortative for any threshold
considered.

6.3.2 Mesoscale analysis
In order to deepen the features of the complex network structure, we move from

a global to a mesoscale level of analysis. Namely, we focus on two specific sets of
nodes according to two key features:

1. nodes are grouped according to their wall-normal coordinate, y+, to highlight
the network structure at different distances from the wall;

2. nodes are grouped according to their importance in the network in terms of
volume-weighted connectivity, Kvw, thus shedding light on the hierarchical
structure of network nodes.

In the following part of this section, these two points of view are described in
detail. In particular, due to the symmetrical behaviour of the results with respect
to the center of the channel, the plots of the metrics as a function of y+ are shown
as averages of both halves of the channel (i.e., y+ ∈ [0, 180] and y+ ∈ [180, 360]).
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Figure 6.6: (a) Mean and standard deviation values (averaged over the two homo-
geneous directions) of the volume-weighted connectivity, Kvw, as a function of y+

for θ = 0.85. (b) Mean values (averaged over the two homogeneous directions) of
Kvw as a function of y+ for different threshold values θ = {0.80, 0.85, 0.90, 0.95}.
(c) Kvw trends at fixed y+ coordinates (see panel (b)), as a function of θ.

Vertical network structure

First, the mean and standard deviation values of Kvw evaluated in planes at
constant y+ are shown in Figure 6.6(a). We found two local maxima of the mean
Kvw at distances from the wall of about y+ ≈ 10 and at about y+ ≈ 120. Such local
peaks of the average value suggest the presence of a large number of H −Kvw nodes
around those locations, namely nodes highly connected with the remaining network.
Moreover, local maxima of the standard deviation are found at almost the same y+

as the local peaks of the average value. This implies that H − Kvw nodes increase
the variability of the Kvw values at these wall-normal locations. Therefore, hubs are
rare in the network (as shown in Figure 6.4), and they are not evenly distributed in
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Figure 6.7: The probability (in percentage and in log10 scale) that a source-node at
a given y+ is linked to a neighbour at another y+ value, for different threshold values
θ. The color-scale ranges from log10(100 × (NxNz)−1) ≈ −2.34 to log10(100) = 2
(i.e., 100% probability), where (NxNz) = 21600 is the number of nodes in a plane
at fixed y+.

the domain but tend to cluster at specific spatial locations. Figure 6.6(b) illustrates
the effect of the correlation threshold, θ, on the mean Kvw profile. As θ increases,
the average value of Kvw decreases at all wall-normal locations, as it is less probable
to find high correlation values for large θ (namely, the nodes are less connected on
average). In particular, mean Kvw values scale in a similar way for different y+ by
following an exponential decreasing behaviour as a function of θ. This is shown in
Figure 6.6(c), which displays the mean Kvw values for four representative y+. It
is remarkable to notice that the location of local peaks of the mean Kvw profiles
remains almost unchanged for different θ values.

Next, the probability that an arbitrary source-node at a fixed y+ plane has a
neighbour (i.e., is directly linked to another node) at others y+ values is investigated.
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In other words, we ask which is the fraction of connections between nodes located
at two wall-normal coordinates. Figure 6.7 shows such a probability (illustrated in
percentage and in a log10 scale) for each threshold value, θ, considered. Source-
nodes at any y+ have first neighbours close to themselves (diagonal part of the
plot), for any θ value. However, we find that nodes corresponding to grid points
close to one wall have non-zero probability to connect with other nodes that are also
near the other wall. This outcome is rather evident for lower threshold values (i.e.,
θ = 0.8, 0.85) while it tends to vanish for higher threshold values (i.e., θ = 0.9, 0.95).
Furthermore, by increasing the correlation threshold, nodes at any y+ tend to have
their first neighbours closer and closer to themselves in the wall-normal direction
(i.e., the diagonal part of the plot stretches), but intra- and inter-wall links are still
present for θ = 0.95 for source-nodes very close to the wall (see Figure 6.7(d)). In
particular, for the reference case at θ = 0.85 (see Figure 6.7(b)), only nodes at a
distance y+ . 70 from one wall have non-zero probability values also near the other
wall. Therefore, we can conclude that in the network built on the u component
there are wall-wall links (both between nodes close to the same wall and at different
walls) and center-center links, but there are no direct wall-center connections.
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Figure 6.8: Sketch of the node i (red dot) and its first neighbourhood, Γ1(i), which
is partitioned in a short-range region, RS (blue dots), and two long-range regions,
RL (brown and green dots). A 3D zoom of the grid in the proximity of node
i is also illustrated, to highlight the 6-orthogonal connectivity in the Cartesian
discretization for the definition of region.

To further shed light on the appearance of inter-wall connections, we investigate
the relation between a node, i, and its first neighbours, Γ1(i), namely the set of
nodes directly linked to i. The spatial position of the first neighbours of a node i
is studied, with the aim to explore if first neighbours spread all over the domain
or there is some kind of spatial organization. With this aim, nodes are grouped
according to their spatial locations. In fact, since to each node of the network
corresponds a volume in a fixed spatial grid position, nodes that are close in space
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can be grouped according to a connectivity criterion. More in detail, we say that a
given set of nodes forms a spatially-connected region (or simply a region) if each node
in the set is distant one grid spacing (in any Cartesian direction, ±∆x, ±∆y(y+)
or ±∆z) from at least another node of the set [42]. In the specific case in which
the set of nodes to be grouped corresponds to the n-th neighbourhood, Γn(i), of a
node i, then we indicate each region of Γn as R(Γn). For example, Figure 6.8 shows
a sketch of the six orthogonal connectivity criterion and the grouping in regions
of the first neighbourhood of a node, i. In particular, if the first neighbourhood,
Γ1(i), a generic node i is focused, we can distinguish between short-range region,
RS(Γ1), and long-range region, RL(Γ1), of i. As a consequence, we say that a
node j is a short-range neighbour of i if both i and j belong to the same spatially
connected region, RS(Γ1) (see blue nodes grouped in the example of Figure 6.8).
On the contrary, j is called a long-range neighbour of i, if j and i do not belong to
the same region (e.g., see nodes in brown and green in Figure 6.8). By extension
of terminology, we refer to short- and long-range links to indicate the connections
between pairs of short- and long-range neighbours, respectively. By recalling that
the number of elements in a set is here indicated via the |•| notation, for every
node in the network it is true that |RS(Γ1)| = 1 (since it can be only one region
comprising a node) and |R(Γ1)| = |RS(Γ1)| + |RL(Γ1)| = 1 + |RL(Γ1)|. The last
relation points out that long-range neighbours are present only if |R(Γ1)| > 1,
otherwise the first neighbourhood of a node i is only spatially connected to i (i.e.,
Γ1(i) is made up only by the short-range region). For instance, in Figure 6.8, the
first neighbourhood of node i can be divided in one short-range region (blue nodes)
and two long-range regions (green and brown nodes), i.e. |R(Γ1)| = 2. It should
be noted that long-range neighbours of a node i are nodes detached from the short-
range region, regardless of the physical (Euclidean) distance from i. Namely, there
is a spatial gap (at least greater than one grid step, in each direction) that divides
short- and long-range regions.

Figure 6.9(a) shows the mean and the standard deviation values of the num-
ber of regions, |R(Γ1)|, formed by first neighbours of nodes at fixed y+. The first
neighbourhood of nodes close to the wall tends to be composed of more than one
region (as the mean is greater than one), while from y+ ≈ 70 up to the center
of the channel, the first neighbours form only one region (with standard devia-
tion equal to zero). This outcome is strictly in accordance with the results shown
in Figure 6.7(b), which indicates that only nodes with coordinate y+ . 70 dis-
play long-range connections. However, long-range regions are not only detected
between nodes at different y+ as shown Figure 6.7, but they are also present in
the homogeneous directions, x and z. Figure 6.9(b) shows the mean and standard
deviation of the weighted physical distance, dw

χ along the directions χ = x, z, for
nodes in planes at constant y+. By following the definition given in Eq. (3.12),
dw

χ is here evaluated only for nodes belonging to the long-range regions, RL(Γ1),
of each node. In so doing, we focus on the average and variance of the distances

118



6.3 – Multi-scale network analysis of the streamwise velocity field

(a) (b)

Figure 6.9: (a) Mean and standard deviation values of the number of regions,
|R(Γ1)|, as a function of the distance to the wall, y+, and averaged over the two
homogeneous directions. (b) Mean and standard deviation of weighted physical
distances between nodes at fixed y+ and their long-range neighbours, averaged over
the two homogeneous directions. The distances are normalized with the maximum
distances, 0.5Lx = 2π and Lz = 25/36π, in the (x, z) directions. Due to the
periodicity of the domain, the maximum distance in the x-direction is Lx/2 instead
of Lx.

between a given node (located at a specific y+) and its long-range neighbours. As
shown in Figure 6.9(b), by moving from the center towards the wall, the long-range
neighbours of a node tend to be located at increased distance (on average) in both
the streamwise and spanwise directions. Moreover, long-range neighbours of nodes
at the same y+ are quite scattered in the x and z directions, as suggested by the
high values of the standard deviation in Figure 6.9(b).

From the two-point spatial correlation definition [27, 44], it is straightforward
expecting that some of the first neighbours of each node i in the network are
located in the proximity of i, forming a short-range region, RS. This can be seen
in Figure 6.7, where the highest probability values are in the diagonal part of
the plots. Moreover, for y+ & 70, in Figure 6.9(a) the number of regions of the
first neighbourhoods drops to one and in Figure 6.9(b) the distance between nodes
and their long-range neighbours drops to zero. Instead, what is not trivial is the
emergence of long-range links in all directions, more specifically inter- and intra-wall
links occurring for y+ . 70.

By analogy with the climate analyses, we refer to long-range links as teleconnec-
tions (see also Section 4.3.1). We recall that in atmospheric sciences teleconnections
indicate climate relations (in terms of temperature, rainfall, pressure or other quan-
tities) between geographically remote regions, farther than the correlation length
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Figure 6.10: Fraction of nodes at constant y+ with at least one negatively correlated
link.

scale of the variable. In this work, the emergence of teleconnections of the stream-
wise velocity can be interpreted as the footprints of a top-down interaction, which
similarly acts from the outer layer to both near-wall regions [45, 46]. In fact,
teleconnections are always individuated between regions close to the two walls (or
close to the same wall), revealing an analogous response of the two wall regions
to the large-scale structures (i.e., turbulent structures with size of the order of the
integral space scale). On the contrary, teleconnections are never found between
inner and outer layer regions, where the interplay dynamics are deeply different
one from each other. In other terms, here teleconnections do not emerge due to a
direct relation between outer and inner layers, but due to an analogous response of
the near-wall velocity field to a similar cause corresponding to large-scale motions.
Therefore, complex networks are able to unveil the presence of teleconnections,
which are usually hidden by the spatial averaging of the correlation coefficient val-
ues. Teleconnections create a texture of links (highlighted by the network metrics)
between distant locations, in which similar (streamwise) kinematic information per-
sists in time. This result is the main difference with respect to other approaches in
the turbulence research, where the usual spatially-averaged correlation only retains
average information about the spatial behaviour of the correlation field.

To complete the analysis as a function of y+, the distribution of the sign of the
correlation coefficient of links between nodes and their first neighbours is investi-
gated. By hypothesis, in this work links in the network are active if the absolute
value of the correlation coefficient, Ci,j, is above θ = 0.85, but links can have either
negative or positive Ci,j values. To highlight the presence of links corresponding
to negative correlations, the fraction of nodes at a given y+ coordinate with at
least a negative-correlated neighbour in the domain is shown in Figure 6.10. For
instance, about 21% of the nodes at y+ = 3.5 is highly negatively correlated with
other nodes. Negative-correlation links are found only for y+ . 70, with a peak
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at y+ = 3.5 that coincides with the peak of the average number of regions in Fig-
ure 6.9(a). More in detail, among the nodes with negatively correlated neighbours
(i.e., nodes with non-zero percentages in Figure 6.10), the occurrence of negative
links is (on average) about 10% of total links. This means that, by arbitrarily se-
lecting a node i located at y+ . 70, we expect that 1/10 of its first neighbours are
negatively correlated with i. Therefore, based on what observed so far, we can infer
that negative correlation links are possible due to the presence of teleconnections
(i.e., y+ . 70), while short-range links for y+ & 70 are only activated by positive
correlation values.

Hierarchical network structure

The analysis of the network features as a function of the wall-normal coordinate,
y+, revealed two key points, namely (i) the most important nodes are not uniformly
distributed throughout the domain, and (ii) nodes close to the walls display long-
range links that are referred as teleconnections. The former result is focused in
this Section, i.e. nodes are grouped according to their importance in the network
in terms of volume-weighted connectivity, Kvw. In particular, we recall that in
Section 6.3.1 we referred as H − Kvw the nodes with Kvw value above the 99th
percentile (i.e., the hubs of the network), while L − Kvw as nodes with Kvw below
the 1st percentile.

Figure 6.11: 3D view of high Kvw nodes, namely regions of hubs, RoHs, for θ =
0.85. Colour scale refers to the fraction of volume occupied by distinct RoHs,
VRoH/Vtot. RoHs are labelled for increasing values of the wall-normal coordinate
of their center of mass. Periodicity of the domain in the x direction is visible from
the RoHs labelled 8, 11, 12 and 22. (b) Weighted y+-component of the center of
mass of the RoHs shown in panel (a), where the center of mass is evaluated as
y+

CoM = ∑︁
i

(︂
y+

i Vi/Vtot

)︂
/V(RoH), with i ∈RoH and V(RoH) the volume occupied

by each RoH. Colours indicate the fraction of volume of each RoH as shown in (a).
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The spatial location of the H − Kvw nodes is shown in a 3D view in Fig-
ure 6.11(a). Highly connected nodes are not scattered in the domain, but they tend
to locally group into clusters elongated in the streamwise direction (the longest one
with a streamwise extension of about ∆x+ ≈ 600). By following the definition of re-
gion provided in this work (namely a spatially-connected set of nodes, as illustrated
in Figure 6.8), the H −Kvw nodes shown Figure 6.11(a) are grouped in regions. By
doing so, the H − Kvw nodes form in this case 31 regions, which we call regions of
hubs (RoHs). It is crucial to recall that nodes in the same RoH are not necessarily
all linked to each other; some of them may be linked, but the RoHs merely identify
groups of high Kvw nodes belonging to the same spatially-connected region. Such
RoHs have different sizes, as illustrated in Figure 6.11(a) where colors indicate the
fraction of volume occupied by each RoH, namely VRoH/Vtot. Furthermore, Fig-
ure 6.11(b) shows the wall-normal coordinate of the center of mass of each RoH,
labelled from 1 to 31 as in Figure 6.11(a). By comparing the y+ position of the
RoHs with the average Kvw values in Figure 6.6(a), it emerges that the presence of
the biggest RoHs (around y+ ≈ 15, RoHs labelled as 7-12, 24, 26, and y+ ≈ 120,
RoHs labelled as 15, 16, 22, 23) is the main responsible of the local peak values of
Kvw.

The effect of the correlation threshold, θ, on the spatial location of the RoHs is
shown in Figure 6.12 for θ = {0.8, 0.85, 0.9, 0.95}. As θ is changed, H − Kvw nodes
close to the wall preserve their overall spatial organization, i.e. they group into x-
elongated spatially-connected regions. For H −Kvw nodes close to the center of the
channel, a similar scenario is found for θ ≥ 0.85, while for θ = 0.8 nodes far from
the walls tend to have lower Kvw values (i.e., RoHs disappear) than nodes close to
the wall. This is due to the fact that nodes close to the walls are highly involved in
teleconnections for low θ values (see also Figure 6.7(a)), thus markedly increasing
their centrality in the network with respect to nodes in the channel center.
The elongated shape of the RoHs can be seen as an effect of the mean flow in the
streamwise direction. In fact, the presence of streamwise-elongated RoHs is not
strongly dependent on the variable selected, since they appear also for the network
built on the wall-normal velocity component (as better discussed in the next Sec-
tion 6.4.2). Moreover, the effect of the mean flow is maintained for sufficiently high
correlation thresholds (as shown in Figure 6.12). The mean flow, therefore, induces
the characteristic shape of RoHs; indeed, this feature is not detected for high-degree
nodes in the correlation network for homogeneous isotropic turbulence [148].

To summarize, the most connected nodes are localized at specific y+ coordinates
and they also tend to cluster in space into elongated structures. The occurrence
of similar patterns of RoHs throughout the domain is a remarkable outcome. In
fact, one would expect different spatial patterns of H − Kvw nodes at different
y+, because the two-point correlation of the streamwise velocity changes along y+

(see the average behaviour at different y+ in Figure B.1(b)). Instead, although
the network is based on the two-point correlation, it is able to retain, all at once,
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Figure 6.12: 3D views of high-Kvw nodes, namely regions of hubs, RoH for different
threshold values, θ. Colour scale refers to the fraction of volume occupied by
distinct RoHs, VRoH/Vtot.

the multi-point effects of active links in all directions, for nodes at any y+. This
outcome emphasizes the potential of the complex network approach to enrich the
spatial characterization of wall turbulence through a unique framework .

Physical interpretation of teleconnections

The mesoscale analysis carried out so far has evidenced the presence of long-
range connections – called teleconnections – between near-wall nodes, and the or-
ganization in spatially-connected regions of highly linked nodes (RoHs), both in
the near-wall and outer layer. In this Section, we combine these two main results
to investigate the first neighbourhood of the most central nodes that also have
long-range neighbours. In other terms, we explore the long-range neighbourhoods
of nodes in the RoHs, which are only present close to the walls. It is worth to
recall that highly-connected nodes (hubs) belonging to the same RoH only satisfy a
proximity criterion, but they are not necessarily linked with each other (topological
criterion).

To this aim, in Figure 6.13 we show an example of RoH (depicted in black and
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corresponding to the ninth RoH in Figure 6.11) and two regions (RL,1 and RL,2,
depicted in blue and red, respectively) formed by the union of long-range neighbours
of the (black) nodes in the RoH. As can be seen, the regions RL,1 and RL,2 inherit
the same elongated shape in the streamwise direction, x, and similar volumes of the
corresponding RoH. Such a behaviour is found for all RoHs close to the walls and
their long-range neighbours. Therefore, not only first neighbours of single nodes at
y+ . 70 form long-range regions (as already observed in Figure 6.7 and Figure 6.9),
but here we find that hubs belonging to the same RoH generate long-range regions
(i.e., sets of long-range neighbours that are physically close one to each other). In
other words, long-range neighbours of nodes in the same RoH are not scattered in
the domain but constitute themselves spatially-connected regions. This outcome
extends the meaning of teleconnections from single nodes to spatially-extended
regions: in the domain, there are regions of highly connected nodes (i.e., the RoHs)
that are strongly linked with distant spatially-connected regions. These pairs of
teleconnected regions, therefore, represent near-wall portions of the domain tightly
correlated over time from the streamwise velocity point of view, i.e. spatially-
extended regions sharing similar dynamics in time.

This outcome plays a crucial role for the statistical significance of the network,
specifically for the link activation. In fact, in networks that are built on the basis of
statistical similarities (in this case, the correlation coefficient), spurious links may
arise. These kind of connections, despite they represent statistically strong depen-
dences (i.e., high correlations), may be present only because of random coincidences
instead of a physical mechanism. To assess the statistical significance of links in
spatial networks for climate analysis, Boers et al. [140] suggested to retain only
links (especially teleconnections) that are part of significant spatial bundles. By
exploiting the fact that the system under study is spatially embedded, links that
are caused by a physical mechanism should exhibit spatial coherence, in contrast
to links caused by random coincidences [140]. Therefore, teleconnected neighbours
in the network built from the streamwise velocity can be reliably assumed to be
statistical significant, since they tend to cluster in space (namely, to form bundles
of nodes), thus exhibiting spatial coherence.

Another important element to characterize the neighbourhood of the hubs (or
RoHs) is the sign of the correlation of links. For a generic node i, we find that
the first neighbours of i belonging to a (short- or long-range) region are either
all positively or all negatively correlated with i. In other terms, for any node
i in the network, the regions formed by its first neighbours are never partially
positively/negatively correlated with i, but always exhibit the same correlation
sign. As a consequence, by focusing on long-range links only, each region formed
by the union of long-range neighbours of nodes of an RoH has a unique correlation
sign with the corresponding RoH. For example, in Figure 6.13, the nodes of the
selected RoH (coloured in black) are all positively correlated with the corresponding
neighbours in RL,1 (coloured in blue), and all negatively correlated with those in
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Figure 6.13: 3D views of nodes in an RoH (black) and two RL regions formed by
long-range neighbours of nodes in the RoH (only a fraction of nodes in the RoH
is actually linked to each RL region, because these regions are the union, and not
the intersection, of the neighbourhoods of the nodes in the RoH). The y+ values
of the center of mass of each RL are y+ ≈ 39 and y+ ≈ 353 (i.e., y+ ≈ 7 to the
closer wall), while the y+ of the RoH is y+ ≈ 11. The blue and red colors indicate
a positive and negative correlation with the RoH, respectively.

RL,2 (coloured in red). Therefore, to summarize, pairs of teleconnected regions –
not only pairs of nodes – are found, which correspond to spatially-extended regions
of fluid moving with similar streamwise velocity in time, characterized by either
positive or negative correlations.

Based on the present findings, we can provide a physical explanation of the
teleconnection patterns by relying on the inspection of the streamwise velocity
time-series. To this aim, two pairs of neighbours are arbitrarily selected from the
regions shown in Figure 6.13: the first pair composed of a node in RoH and a neigh-
bour in RL,1, and the second pair composed of a node in RoH and a neighbour in
RL,2. For both pairs, in Figure 6.14 the time-series of the streamwise velocity fluc-
tuations, u′, are plotted. It can be noted that the streamwise fluctuations have
mostly the same sign for large time-intervals: for the pair involving the node in
RL,1 (Figure 6.14(a)), during the time interval ∆t ≈ |0.77 − 0.12| = 0.65H/uτ ,
while for the pair involving the node in RL,2 (Figure 6.14(b)), during the time in-
terval ∆ti ≈ |0.98 − 0.3| = 0.68H/uτ . This behaviour is typical of high/low speed
coherent streaks, that is alternating near-wall regions of positive/negative velocity
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Figure 6.14: Time-series of the streamwise velocity fluctuations, u′, of two different
pair of nodes extracted from RoHs shown in Figure 6.13 (times are in terms of
H/uτ ). The black shaded series correspond to a node in the black RoH of Fig-
ure 6.13, while blue and red shaded series correspond to nodes in RL,1 and RL,2,
respectively. The values of the correlation coefficients and the temporal limits of
the maximum time-interval with the same u′ sign for the two pairs of nodes, are
also reported.

fluctuations, with an average spanwise separation of ∆z+ ∼ 100 and streamwise
lengths ∆x+ ∼ 103 ÷ 104 (see Section 2.3.1). By applying the Taylor hypothesis of
frozen turbulence [183] and the typical near-wall convective velocity, U+

c ≈ 10 [184],
we estimate that the range, ∆x+, corresponding to the time intervals ∆t ≈ 0.65,
is ∆x+ = (∆t · Reτ ) U+

c ≈ 1200, which is in agreement with the typical streamwise
elongation of the streaks. The presence of near-wall teleconnections with both posi-
tive and negative correlation sign can be thus interpreted as an imprint of turbulent
coherent structures with time-scale of the order of the temporal window considered.
In particular, the complex network approach is able to provide a high level of spa-
tial information (i.e., spatial position, shape and size) of such coherent patterns,
thus enriching the spatial characterization of wall-bounded turbulent flows.
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6.3.3 Local scale analysis
In this section we exploit the results obtained from the global and mesoscale

analyses to further explore the kinematic relations between nodes in the domain.
By focusing on representative node pairs, we inquire what are the correlation paths
in the network between the selected nodes and all the others in the network. In fact,
the network built on the correlation coefficient of the velocity time-series is not just
a trivial collection of correlated points, but it represents a pattern of (linear) inter-
connections among nodes. Therefore, the network can be interpreted as a structure
of links over which the kinematic information moves throughout the domain. In
particular, if a node i is linked to a node j (i.e., by hypothesis, they are strongly
correlated) and the node j is linked to a third node k (but i is not linked to k, i.e.
Ai,k = 0), then the kinematic information indirectly flows from i to k by means of
j (i.e., i and k are indirectly linked). The ability to unveil such indirect relations
between not-directly-linked nodes is one of the most powerful features of complex
networks [83], which is highlighted by the analysis of shortest paths. To this end, we
analyse the indirect relations between nodes from the point of view of the shortest
paths (see Section 3.3.2) and the cumulative neighbourhoods, Γn

c (see Section 3.3.1)
of some representative nodes.

High correlation shortest paths

Here we explore the shortest paths between nodes at different wall-normal lo-
cations. We recall that a shortest path is the path of minimum cost between two
nodes, where the cost represents the shortest path distance. Since the direction of
the links is not taken into account in this work, the shortest path starting from
node i and arriving to node j, is the same as starting from j and arriving to i (i.e.,
the order of the end-nodes of the shortest path is not relevant). If the links in the
network are weighted (i.e., a scalar value is assigned to each link), the shortest path
distance corresponds to the minimum value of the sum of the link-weights between
two nodes. When the network links are established on the correlation coefficients,
an appropriate metric for weighting links and evaluating the shortest path is the
function Di,j =

√︂
2(1 − |Ci,j|) [185] (the 2 is conventional), which highlights the

paths with high (in modulus) correlation values, Ci,j. More in detail, Di,j fulfils the
three axioms defining a metric, namely Di,j = 0 iff i = j (as Ci,i = 0), Di,j = Dj,i

(as Ci,j is symmetric) and Di,j ≤ Di,k + Dk,j for any (i, j, k). The expression of
Di,j as a function of the correlation coefficient can be obtained by following the
geometrical reasoning in which each time-series of length N can be viewed as a
multidimensional vector in a Euclidean N -dimensional space. Hence, by consid-
ering two time-series, u∗

i (t) and u∗
j(t), normalized with their mean and standard

deviation values and extracted in two spatial locations, i and j, respectively, the
square of the distance between them can be expressed as:
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(6.1)

where the first two summations are both equal to 1 (due to series normalization)
since they are the variance of u∗

i (t) and u∗
j(t), respectively, while the third summa-

tion is the definition of correlation coefficient. In this work, the absolute value of
C is taken in order to give the same importance to positive and negative values.
Therefore, from the Eq. (6.1) it follows that if two time-series are highly correlated
their distance is short (in an N -dimensional space).

We analyse two configurations of shortest path in which links are weighted
through Di,j, by selecting either short/long-range links or short-range links only.
In the first configuration, indicated as SL, both short- and long-range links are
considered (i.e., the network as it was built) and nodes at different y+ are inves-
tigated. Specifically, two pairs of nodes are selected: (i) an end-node of the path
close to the wall and the other end-node at the center (see Figure 6.15(a)), and (ii)
both the end-nodes at the center of the channel (see Figure 6.15(b)). The shortest
paths for the SL configuration are shown in light-blue in Figure 6.15. The second
configuration (indicated as S) is also analysed to highlight the effects of the tele-
connections in the shortest paths, so that only short-range links are considered (i.e.,
long-range links are removed). The resulting shortest paths are shown in magenta
in Figure 6.15, for the same pairs of end-nodes as the SL configuration.

For the SL and S shortest paths shown in Figure 6.15(a), the total cost (equal
to ∑︁Di,j) is 7.55 and 8.69, while the number of links is 17 and 18, respectively. For
the SL and S shortest paths reported in Figure 6.15(b), instead, the total cost is
12.18 and 18.57, while the number of links is equal to 26 and 38, respectively. The
difference between S and SL configurations is evident: by including the teleconnec-
tions (i.e., the SL configuration) the shortest paths are more complex and involve
nodes in the near wall region, as a consequence of the strong connectivity of this
part of the domain. Furthermore, the S shortest paths are made up of more links
and have a higher total cost (i.e., lower effective correlation) than the SL shortest
paths. It is worth noting that the shortest paths from a node at the channel center
towards a node close to the wall in the S configuration (see Figure 6.15(a)) tend
to be vertically aligned in the wall-normal direction. This outcome suggests that a
top-down interaction between the outer layer and the near-wall regions is present,
but it is not direct. In other terms, nodes at the channel center and close to the
walls are not directly linked (as also emerged from the mesoscale analysis) but they
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x À periodicity

Figure 6.15: Shortest paths in the two configurations: SL, i.e., short/long-range
links (coloured in light-blue); S, i.e. only short-range links (coloured in magenta).
The end-nodes of the paths are depicted in orange, while intermediate nodes are
reported in black. (a) End-nodes are at different y+, one close to the wall, at coor-
dinates (x+, y+, z+) = (1139, 3.5, 197), and the other at the center of the channel,
i.e., (x+, y+, z+) = (1139, 180, 197). The black arrows indicate the periodicity of
the domain in the x-direction. (b) Both end-nodes are at the center of the channel,
at coordinates (x+, y+, z+) = (1139, 180, 197) and (x+, y+, z+) = (2262, 180, 197).

are indirectly linked via a shortest path that is vertically aligned. This is in line
with the idea that the emergence of teleconnections of the streamwise velocity can
be interpreted as the footprints of the top-down interactions.

To further underline the importance of teleconnections in the overall topology
of the network, we show a particular case of the S configuration, in which the end-
nodes of the shortest path are linked with teleconnections. Specifically, the shortest
paths are evaluated by selecting as end-nodes a source-node in the near-wall domain
(since teleconnections are present for y+ . 70) and six different teleconnected
neighbours of it. These paths are shown, with different colors, in two 3D views
in Figure 6.16(a) and Figure 6.16(b): they represent the shortest paths connecting
the source-node to its long-range neighbours (and vice-versa) if teleconnections
were not present. The removal of the long-range links implies that the kinematic
information has to flow through several short-range links, demonstrating that the
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6 – Turbulent channel flows in the view of spatial networks

(b)

(a)

Figure 6.16: Example of shortest paths between a source-node close to the wall
(light-blue dot) and six teleconnected neighbours of it, shown through two 3D views.
Different colors refer to different targets, while black points indicate intermediate
nodes in the paths.

presence of teleconnections provides a bridge for the kinematic information between
distant locations in the domain.

Cumulative neighbourhoods analysis

To conclude the analysis at the local-scale level, we explore the behaviour of the
cumulative neighbourhoods, Γn

c (i), for nodes i belonging to three representative
pairs of nodes, where each pair comprises a high and a low Kvw node either close
or far from the wall. We recall that the n-th neighbourhood of a node, i, is the
set of nodes that can be reached from i by crossing at least n different links.
Therefore, the n-th cumulative neighbourhood, Γn

c (i), of i is the union of its first
n neighbourhoods (including i). The three representative node pairs are labelled
according to their wall-normal coordinate as c, w1 and w2 indicating that their
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coordinates are y+ ≈ 180 (channel center) and y+ ≈ 3.5 from the closest wall,
respectively. Moreover, these nodes are here referred as source-nodes as they are
the source of each cumulative neighbourhood. The behaviour of all other nodes
with intermediate y+ coordinates and Kvw values is not shown as it lies in between
the behaviour of nodes in c, w1 and w2.

It should be pointed out that the behaviour of the cumulative neighbourhoods
of a given node, i, provides a synthetic representation of all the shortest paths
from i to all other nodes in the network. In fact, since to find the shortest path
between two nodes via the optimum algorithm it is required a time-complexity of
the order of O(Ne) [186], for large networks the shortest path evaluation could be
computationally demanding. Therefore, the cumulative neighbourhoods provide a
simplified but qualitatively informative way to explore the shortest paths between
a source-node and the remaining nodes in the network.

Figure 6.17 shows the positions of the cumulative neighbourhoods of the high-
Kvw nodes of the pair c (channel center) and w1 (i.e., at y+ ≈ 3.5), for n =
{1, 2, 3, 8, 13, 18}. It is worth noting that the network is built on a periodic com-
putational domain in the x direction, which markedly affects the three-dimensional
views of the Γn

c (e.g., see the n = 8 panel in Figure 6.17(b)). The resulting spatial
expansion of Γn

c for nodes at different y+ appears completely different. By focusing
firstly on the node close to the wall (Figure 6.17(a)), the first three neighbour-
hoods are all close to both walls, revealing the occurrence of teleconnections which
are scattered in the (x, z) directions (confirming the outcomes from the mesoscale
analysis). In particular, the pattern of these neighbourhoods is very anisotropic,
since it is quite elongated in the streamwise direction. Neighbourhoods for n > 3
also include nodes close to the walls first (see for example the panel at n = 8),
starting to incorporate nodes at higher y+ values and finally approaching the cen-
ter of the channel. Therefore, in this case, the cumulative neighbourhoods move
progressively from the walls to the center of the channel, implying a very high con-
nectivity among nodes close to the walls, where teleconnections play a crucial role.
On the other hand, for the high-Kvw node at the channel center (Figure 6.17(b)),
the first neighbourhoods are all close to it, they are almost isotropic in the (y, z)
directions and a bit elongated along the x direction. Only from the n = 13 neigh-
bourhood, the nodes close to the walls start to be included. From this step onward,
all the nodes close to the walls are first included in the successive neighbourhood
expansion, and only later all the other nodes at higher y+ are covered. Therefore,
the behaviour displayed in Figure 6.17 indicates that, either by considering a node
close to the wall or at the center of the channel, the expansion of the cumulative
neighbourhoods in the y+ direction does not occupy the volume of the domain in a
monotonic way. In fact, the near-wall regions tend to be included faster, while the
central part of the domain is covered afterwards.
It is remarkable to note that the pattern shown in Figure 6.17(b) resembles the
SL shortest path shown in light-blue in Figure 6.15(b), in which the path between
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  Wall    Center  (a)
    (HÀKvw, w1)   (HÀKvw, c)

N=1 n=1

n=8

n=3

n=13

n=18

n=2

n=8

n=3

n=13

n=18

n=2

n=1

(b)

Figure 6.17: (3D views of the n-th cumulative neighborhoods of high-Kvw nodes
(marked in green in the n = 1 panels). (a) Node close to the wall at y+ ≃ 3.5; (b)
node at the center of the channel, y+ = 180.

two nodes at the channel center has to reach the wall region before connecting
again to the channel center. This emphasizes the conceptual connection between
shortest paths and n-th neighbourhoods, as well as the role of teleconnections as
intermediary links for kinematic information flow over long distances, even for pairs
of end-nodes at the center of the channel.

The behaviour of the cumulative neighbourhoods that emerge from Figure 6.17
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6.3 – Multi-scale network analysis of the streamwise velocity field

(a) (b)

Figure 6.18: (a) Fraction of volume, VN/Vtot, and (b) number of regions, |R(Γc
n)|,

of the n-th cumulative neighbourhoods for the three selected pairs of nodes (w1,
w2, c).

can be quantified by means of two parameters: the size (expressed as volume frac-
tions) and the number of spatially-connected regions of each cumulative neighbour-
hood. The fraction of volume, V(Γc

n)/Vtot, occupied by cumulative neighbourhoods
Γc

n of the three selected node pairs is shown in Figure 6.18(a), while the number of
regions, |R(Γc

n)|, of each Γc
n is displayed in Figure 6.18(b). For both the fraction

of volume and the number of regions, pairs of nodes w1 and w2 show the same
overall behaviour as a function of n, which is faster than the one observed for the
c pair. Specifically, focusing on the fraction of volume, the expansion of the neigh-
bourhoods for nodes in w1 and w2 (see blue and orange curves, respectively) is
initially much faster than the expansion for the pair c (green curves). However,
at intermediate n values (i.e., from around n = 5 for the w1 and w2 pairs, and
n = 15 for the c pair), the Γn

c of all source-nodes tend to growth almost linearly
with similar slopes: these ranges of n values correspond to a wall-normal stratified
increase of V(Γc

n)/Vtot (e.g., see panels for n equal to 8 and 13 in Figure 6.17(a)
and n = 18 in Figure 6.17(b)). From this range on, the n-th neighbourhoods are
composed of almost planar layers of nodes parallel to the wall.
By focusing the number of regions formed by each Γc

n, the peaks of |R(Γn
c )| occur at

low n for the w1 and w2 pairs, while for the c pair the maximum values of |R(Γn
c )|

are attained at higher n. Values of |R(Γn
c )| greater than one are localized in specific

ranges of n associated to the inclusion of nodes close to the walls (with consequent
appearance of teleconnections), while for the remaining n values |R(Γn

c )| = 1 (i.e.,
only one region). Moreover, within a pair of nodes, the behaviour of the nodes with
low-Kvw values is similar but slower than the corresponding node with high-Kvw.
This is in line with the assortativity plot in Figure 6.5(a) where nodes with low
Kvw values are more likely to be linked to nodes with similar Kvw and some more
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steps are required to reach nodes with high-Kvw values, which are connected to a
larger fraction of the domain.

The analysis of the Γn
c neighbourhoods provides insights into the kinematic

information flow, evidencing that: (i) nodes in the near-wall regions (indicatively,
y+ . 70) are strongly inter-connected for low n values, creating anisotropic textures
of teleconnections, that result in a very effective kinematic information spreading;
(ii) nodes around the center of the channel (indicatively, y+ & 70) display localized
high-correlation patterns for low n values, similar to those extracted in homoge-
neous isotropic turbulence [148]; (iii) high Kvw nodes are the most central in the
network, not only relative to the first neighbourhood but also in relation with the
whole network.

To summarize, the local scale analysis provides a detailed description of the
topological and kinematic relations between different physical locations in the do-
main. In particular, the investigation of Γn

c and the shortest paths reveals the full
potential of the network in capturing the spatial information related to the pat-
terns of indirect interactions and teleconnections, which is possible only thanks to
a network approach.

6.4 Complementary results
In this Section we report results that are complementary to the main analysis

described in the previous Section 6.3. We explore how different parameters and
variables affect the correlation-based network, by highlighting similarities or differ-
ences with respect to the principal analysis. In particular, the main features of the
network built on the streamwise velocity for a higher Reynolds number and different
time windows is explored in Section 6.4.1. The network built on the wall-normal
velocity component, instead, is investigated in Section 6.4.2.

6.4.1 Parametric analysis of the u-based network
Additional results are here provided for the spatial network built on the stream-

wise velocity component. First, the effects of a higher Reynolds number is investi-
gated by exploiting a DNS at Reτ = 590 for T + ≈ 370 (details of the simulation
are included in Appendix B.4). The spatial network is built by following the same
procedure as the case for Reτ = 180. In particular, the correlation coefficients are
filtered by using θ = 0.85 as in the main analysis reported in Section 6.3.

Figure 6.19(a) shows the cumulative probability distribution of the volume-
weighted connectivity (black curve). As in the network for Reτ = 180 (Fig-
ure 6.4(a)), the cumulative distribution follows an exponential decay with a cut-off
for large Kvw values. This suggest the presence of hubs in the network, similarly
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Figure 6.19: (a) Cumulative Kvw distribution, 1 − P (Kvw), for the network built
on the streamwise velocity at Reτ = 590. The behaviour of P (Kvw) is shown for
the global network (black curve) and for five representative y+ coordinates. (b)
Probability (in percentage and in log10 scale) that a source-node at a given y+ is
linked to a neighbour at another y+ value for the network at Reτ = 590.

to the case at low Reynolds number. In order to explore the presence of telecon-
nections, the probability that an arbitrary source-node at a fixed y+ plane has a
neighbour at others y+ values is shown in Figure 6.19(b). For the selected time
window, T +, the network built at Reτ = 590 display fewer teleconnections between
near-wall regions than the Reτ = 180 case (see Figure 6.7(b)). However, for the
higher Reynolds number, non-zero probabilities are found for larger y+ values (up
to y+ ≈ 400), while for Reτ = 180 teleconnections are limited to y+ . 70.

Figure 6.20: Comparison of the regions of hubs (RoHs) for the networks built at (a)
Reτ = 180 and (b) Reτ = 590. RoHs are defined based on the 99th percentile of the
Kvw probability distribution conditioned to the y+ coordinates of nodes. Colours
indicate the fraction of volume of each RoH.

The presence of regions of hubs (RoHs) for the network built at Reτ = 590 is
also investigated. However, a direct comparison between RoHs at different Reynolds
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numbers cannot be done, because the domain size in wall-units increases in the wall-
normal direction proportionally to the Reynolds number. In fact, since the outer
layer extension increases for higher Reτ , nodes that are far from the wall are more
likely to link with other nodes in the outer layer. As a consequence, nodes located
at high y+ values represent cells of the domain with large volume, thus significantly
affecting their Kvw value. In other terms, a node at the channel center for Reτ = 590
is much more likely to have a high Kvw value than a node at the channel center for
Reτ = 180. To overcome this issue, hubs in the network are then re-defined as the
most connected nodes (i.e., satisfying the condition 1 − P (Kvw) ≤ 10−2) at each y+

coordinate. Namely, the importance of a node, i, in the network is conditioned to the
node wall-normal coordinate, y+

i . Figure 6.19(a) shows the cumulative probability
distributions of Kvw at five representative y+ coordinates for Reτ = 590. By taking
the 99th percentile of each probability distribution at each y+, we obtain the hubs
in the network as shown in Figure 6.20. It can be observed that, by conditioning
the hub definition to the y+ coordinates, spatially-connected regions of hubs are
present both for the network built at Reτ = 180 (Figure 6.20(a)) and Reτ = 590
(Figure 6.20(b)), and they are still elongated in the streamwise direction as an effect
of the mean flow advection.

Figure 6.21: (a) Cumulative Kvw distribution for the network built on the stream-
wise velocity at Reτ = 180, for different temporal windows, T +. (b) Mean values
of the volume-weighted connectivity as a function of y+ for different T +.

To conclude the analysis of the spatial networks built on streamwise velocity
component, the effect of the temporal window, T +, is studied. With this aim,
networks are built for three T + values different than the reference case at T + = 225,
namely T + = {112.5, 337.5, 450} corresponding to half, three halves and double the
reference case. Figure 6.21(a) shows the cumulative probability distribution for the
four T + here focused, while the average Kvw as a function of y+ is reported in

136



6.4 – Complementary results

Figure 6.22: 3D views of the RoHs for different temporal windows for the network
built at Reτ = 180. (a) T + = 112.5; (b) T + = 225; (c) T + = 337.5; (d) T + = 450.
RoHs are defined based on the 99th percentile of the Kvw probability distribution
conditioned to the y+ coordinates of nodes. Colours indicate the fraction of volume
of each RoH.

Figure 6.21(b). As T + decreases, the probability to find nodes with high volume-
weighted connectivity increases (Figure 6.21(a)), because it is more likely to find
portions of the domain that are highly correlated for shorter temporal windows.
The parts of the domain that benefit of the increase of Kvw are those close to the
walls: as illustrated in Figure 6.21(b), in fact, the average Kvw strongly increases in
the proximity of the wall as T + decreases. This in turn implies that teleconnections
are more likely to appear if the temporal window considered decreases.

Finally, the spatial location of the hubs of the networks built at different T +

is shown in Figure 6.22. As for the networks at different Reynolds numbers, the
high-Kvw nodes are selected by taking the 99th percentile of the cumulative dis-
tributions evaluated at each y+ coordinate. This choice is motivated by the large
differences in the values of Kvw among different T + cases, as highlighted by the
tails of the distributions in Figure 6.21(a) and the average values in Figure 6.21(b).
As previously, spatially-connected regions of hubs elongated in the streamwise di-
rections are found at different wall-normal locations. Additionally, it appears from
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Figure 6.22 that RoHs tend to occupy similar portions of the domain as T + changes,
suggesting that RoHs are the result of a dynamics of flow that persists in time in
those locations.

6.4.2 Results for the wall-normal velocity, v

This Section reports some results concerning the network based on the wall-
normal velocity, v, with θ = {0.8, 0.85, 0.90, 0.95} as in the main analysis for the
streamwise velocity. The wall-normal velocity, besides the streamwise component,
is one of the most significant variables to characterize a turbulent channel flow as
it is the velocity component corresponding to the inhomogeneous direction.

Figure 6.23: Network built on the wall-normal velocity, v. (a) Cumulative Kvw

distribution and (b) weighted average nearest neighbours assortativity measure,
Kvw

nn(i), as a function of Kvw, for different thresholds θ.

From a global point of view, sharp decays of 1 − P (Kvw) are found for different
θ values in the network based on v as shown in Figure 6.23(a). Therefore, high
values of Kvw are extremely rare in the network based on the wall-normal velocity
component. Moreover, as shown in Figure 6.23(b), the network built on v is strongly
assortative, i.e., the nodes and their neighbours are close in space and share similar
neighbourhoods in terms of spatial extension (i.e., similar values of Kvw). Therefore,
the global features of the network built on v are similar to those of the network
built on u, but more pronounced.

From a mesoscale point of view, by focusing on the threshold θ = 0.85, the
average and standard deviation values of Kvw as a function of y+ are reported
in Figure 6.24(a). Differently from the network built on the streamwise velocity
component, u, most of the hubs in the network for v are located far from the walls,
suggesting an almost absence of near-wall teleconnections. This is indeed confirmed
by the probability that an arbitrary source-node has a neighbour at another y+

value. As shown in Figure 6.24(b), most of the nodes connect with nodes close
to them (diagonal part of the plot), and only few points very close to the wall
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Figure 6.24: Network built on the wall-normal velocity, v. (a) Mean and standard
deviation values (averaged over the two homogeneous directions) of the volume-
weighted connectivity, Kvw, as a function of y+ for θ = 0.85. (b) Probability
(in percentage and in log10 scale) that a source-node at a given y+ is linked to
a neighbour at another y+ value. (c) 3D view of RoHs (defined from the 99th
percentile of the global P (Kvw) shown in panel (a)). Colour scale refers to the
fraction of volume occupied by distinct RoHs, VRoH/Vtot.

have teleconnected neighbours close to the other wall. The substantial absence of
teleconnections, therefore, makes the network of v even more assortative than the
network of u. Finally, the spatial location of the H −Kvw nodes of the network of v
is shown in a 3D view in Figure 6.24(c). As for the network of u, H −Kvw nodes are
not scattered in the domain, but they tend to locally group into clusters elongated
in the streamwise direction, as an effect of the streamwise advection. However,
differently from the network of u, H − Kvw nodes only occur around the center
of the channel for the network based on v. This happens because teleconnections
enhance the centrality of nodes close to the walls, and this behaviour is magnified
in the network based on u rather than in the network on v.
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6.5 Summary and future outlooks
Complex networks are exploited to study of a fully-developed turbulent channel

flow at three levels, namely global scale (i.e., considering all nodes, without any
distinction), mesoscale (i.e., dealing with groups of nodes), and local scale (i.e.,
focusing on single nodes). We extend the concept of area-weighted connectivity
typical of climate networks to a volume-weighted connectivity, by constructing a
three-dimensional spatial network. In this way, nodes represent fractions of volume
of the physical domain, while the correlation coefficient is filtered to activate links,
retaining the highest values (in modulus). By doing so, the strongest kinematic
linear inter-relations are highlighted.

By investigating the network at different levels, we find the presence of hubs (i.e.,
nodes highly connected to other parts of the domain), which tend to be localized (on
average) at specific wall-normal coordinates, both close to the walls and around the
center of the channel. In more detail, hubs tend to cluster into streamwise-elongated
regions, RoHs, for both the streamwise and wall-normal velocities and for different
Reynolds numbers. However, only in the network built on the streamwise velocity
the RoHs appear both close to the walls and in the channel center, while in the
network built on the wall-normal velocity they are confined around the channel
center. This difference is due to the presence of inter-wall and intra-wall long-range
links in all directions in the network for the streamwise velocity. We refer to these
long-range links as teleconnections, which reveal an analogous response of the near-
wall velocity field to large-scale motions. Additionally, the teleconnected neighbours
of nodes in the same RoHs tend to group into spatially-connected regions (similar
to the corresponding RoHs). Therefore, RoHs and the corresponding teleconnected
regions constitute strongly correlated near-wall parts of the domain, that turn out
to be related to the persistence of streamwise velocity streaks, namely near-wall
coherent structures.
Finally, to highlight the different ways in which the kinematic information flow
in the domain, we investigate the behaviour of the successive neighbourhoods and
shortest paths. The presence or absence or teleconnections plays a crucial role in the
information flow through shortest paths, since teleconnections provide a shortcut
to the kinematic information between distant locations, even between pair of nodes
at the channel center.

The proposed network-based approach provides a versatile and powerful frame-
work to study complex systems as turbulent flows in a Eulerian viewpoint, especially
in the presence of inhomogeneities. Through the application of the network for-
malism, a different perspective on wall-bounded turbulent flows is introduced, in
which the spatial information is preserved and enriched by the multi-point effects of
active links in all directions. In fact, teleconnections between distant near-wall re-
gions have been localized and associated with the temporal persistence of coherent
patterns in a straightforward way; this operation may turn out to be a complicated
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task when other techniques are adopted.
Future research will be focused on deepening the Reynolds number effects on

the network structure, in particular for the emergence of teleconnections. More
insights into the interpretation of network hubs (and their spatial organization)
as well as velocity teleconnections surely deserve to be explored. To this purpose,
the interplay between other turbulent quantities could be studied, for instance, by
focusing on the energy or vorticity fields. In this way, similarly to the success-
ful employment in climate analysis, spatial networks can be employed to support
classical statistics in the understanding of the top-down mechanisms between large
scale motions and near-wall flow dynamics, especially through the characterization
of teleconnections. Furthermore, spatial networks can be used for the identification
of coherent structures or regions with high turbulence intensity, so that complex
networks could also serve as a diagnostic tool for control strategies in practical
applications involving wall-bounded turbulence.
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Chapter 7

Lagrangian mixing in wall
turbulence: a network perspective

Some of the contents presented in this Chapter have been previously published.
Below are provided the references:

G. Iacobello, S. Scarsoglio, J.G.M. Kuerten, and L. Ridolfi. “Lagrangian network
analysis of turbulent mixing”. In: Journal of Fluid Mechanics 865 (2019), pp. 546–
562. doi: 10.1017/jfm.2019.79.

7.1 Motivation
The Lagrangian viewpoint of turbulent mixing in which particles are tracked

in the flow, has turned out to be better suited than the Eulerian view in many
cases, due to the natural way to approach particle dispersion by analysing par-
ticle trajectories. By exploiting the Lagrangian viewpoint, the time evolution of
pair- and multi-particles has usually been explored in terms of geometrical fea-
tures, such as pairwise mean-square separation or multi-particle shape evolution
(see Section 2.3.2). In the context of Lagrangian passive scalar dispersion, most of
the studies have focused on homogeneous isotropic turbulence [7, 55, 56], with few
applications on relative dispersion on anisotropic and inhomogeneous turbulence,
such as wall-bounded turbulence [62, 64–66].

In this Chapter, motivated by the need to provide a better characterization
of Lagrangian mixing in wall-bounded turbulence, a complex networks analysis of
mixing is carried out. In more detail, a turbulent channel flow is investigated in a
Lagrangian way, with the aim to extend the level of information of classical statis-
tics (such as the pairwise mean-square separation), thus providing a geometrical
representation of the particle dynamics. In so doing, it is possible to shed light on
the interplay between the mean flow advection and wall-normal turbulent mixing
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on particle dynamics, thus highlighting the key role of the spatial inhomogeneity.
Although network-based analyses of fluid flows in a Lagrangian frame have

recently been carried out, they mainly focuses on fluid transport and coherent
structure identification. Moreover, the linking criterion has usually been based on
a similarity measure between particle trajectories evaluated in a given time interval,
so that the temporal details of particle trajectories do not explicitly emerge (see
Section 4.4). Differently, in this work the spatio-temporal evolution of particles is
captured at each time step, providing a rich and detailed time-dependent picture of
turbulent mixing. Therefore, the time-varying network formulation here proposed
intrinsically highlights the temporal development of particle dynamics due to the
turbulent motion.

The Chapter is organized as follows. Section 7.2 reports the methodology de-
tails, by describing the turbulent channel flow setup, the initial particle arrange-
ment, as well as the details of complex network construction. Results are shown
in Section 7.3. The main features of the network structure and turbulent mixing
characterization are shown in Section 7.3.1 for an unweighted particle interaction.
Network metrics are discussed in Section 7.3.2, by highlighting the network struc-
ture obtained by introducing a pairwise particle interaction strength. Finally, a
resume of the results and future perspectives are delineated in Section 7.4.

7.2 Time-varying network representation of par-
ticle dynamics

In order to build a complex network based on particle trajectories, a DNS of a
fully-developed (incompressible) turbulent channel flow at Reτ = 950 is exploited
(for more details on the simulation, see Appendix B.5). A set of 100 × 100 fluid
particles is arranged as a uniformly distributed grid in the plane (y+, z+) at x+ = 0
at the initial time (i.e., the time in which particle are seeded in the domain). Fluid
particles are seeded in the domain after the statistically stationary condition of
the flow is reached. The time-dependent particle positions are then extracted by
integrating the local (Eulerian) fluid velocity field (see Appendix B.5). Particles
are tracked for a time interval equal to T + = 15200, with a time-step equal to
∆t+ = 4.75. The total simulation time in wall units, T +, is set greater than
14200ν/u2

τ , which is the wall-normal (Eulerian) mixing time, namely the integral
time-scale after which the Taylor dispersion analysis is asymptotically valid [188].
The wall-normal (Eulerian) mixing time equals, by definition, H2/ϵy [189], where
ϵy = 0.067 H uτ is the Elder’s vertical mixing coefficient [190]. The initial particle
arrangement is displayed in Figure 7.1(a), while Figure 7.1(b)-(d) show the particle
positions at three representative times. In Figure 7.1, coordinate-axes are not in
scale and particles are coloured according to their initial y+ values. It is worth
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Figure 7.1: 3D views of particle positions at four characteristic times, t+ =
{0, 190, 2327.5, 15199.5}. Particles are coloured according to their initial wall-
normal coordinate, y+, as illustrated in the inset of panel (a).

noting the different particle arrangements at short times (Figure 7.1(b)) and long
times (Figure 7.1(d)).

Particle connection description. To investigate the turbulent dispersion via
the network formalism, the interactions between fluid particles are determined
based on mutual spatial proximity (as discussed in Section 4.4.2, see Figure 4.5).
Namely, two particles, g and q, are connected at a given time if g lies inside the
reference ellipsoid centred at q and vice versa (by symmetry). Therefore, a con-
nection is established between two particles if they come sufficiently close in space
during their motion. This concept is illustrated in Figure 7.2, which shows a sketch
of the initial particle configuration as well as the temporal evolution of a particle
along its trajectory (depicted as a green dot and dashed line, respectively), and the
connections with other particles enclosed in its reference ellipsoid.
We also recall that the ellipsoid semi-axes, aχ, are set proportional to the average
pairwise distances between particles, dχ(t), in each Cartesian direction χ = {x, y, z}
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Figure 7.2: Sketch of the setup for the Lagrangian network based analysis. Coloured
spheres represent particles, which are initially released from a uniformly spaced grid
at x+ = 0. A reference particle is highlighted and reference ellipsoid are depicted as
a dashed green line and a grey-shaded surface, respectively. Connections between
particles are illustrated as black lines.

(see Figure B.3). Each ellipsoid is determined by means of its semi-axis lengths,
{ax, ay, az}, representing spatial scales of turbulent motion along each Cartesian
direction. Accordingly, if the Euclidean distance between a pair of particles is less
than aχ in each direction χ = {x, y, z} (namely they are connected), then the two
particles share turbulent length scales greater (or equal) than aχ. The choice of aχ

is generally a non-trivial task which depends on the specific problem under study,
such as the presence of inhomogeneities in the flow or if particles are involved in
chemical or biological process (in which specific interactions occur when particles
are sufficiently close). When characteristic scales are not known a priori, the issue
of setting aχ – namely to assess the typical length scales in the flow – can be faced,
for instance, by relying on turbulence spectra, correlation functions, as well as co-
herent structure identification techniques. Here, as a reference case, the factor of
proportionality, α, between aχ and dχ(t) is set as a constant value equal to α = 0.5
(so that the ellipsoid size in each Cartesian direction is equal to the average dis-
tance). The sensitivity of the network results on α (namely on the ellipsoid size)
is also investigated in the range α ∈ (0,1), showing similar results for different α
values (see Section 7.3.1). It should be noted that, although α may also explicitly
depend on t+, we consider α constant in time in order to focus only on the temporal
dependency of the semi-axis lengths aχ.

Particle grouping and network building. Since the focus is on the wall-
normal mixing process, particles are grouped into Nl = 100 wall-normal levels, li.
Each level includes a spanwise-row of fluid particles at the initial time (e.g., a level
corresponds to a row of particles with the same color in Figure 7.1(a) or Figure 7.2).
As a consequence, each level li is univocally associated to the y+ value of particles

146



7.2 – Time-varying network representation of particle dynamics

Figure 7.3: (a) Example of particle dynamics depicted as a contact sequence, and
(b) temporal evolution of the corresponding networks (the link thickness is propor-
tional to its weight). For both panels, colors from red to blue highlight different
starting levels (i.e., different initial y+ values).

at t+ = 0. The 104 particles seeded in the domain are hence arranged in Nl = 100
spanwise rows, each one comprising 100 particles separated by ∆z+ = 29.85. The
particles closest to the walls (i.e., l1 and l100) are located at y+ = 9.5, while the
remaining ones are separated by ∆y+ = 19. The initial particle grouping into levels
naturally emerges here as the presence of the walls introduces an inhomogeneous
direction, y+. It should be noted that, differently from previous studies dealing
with multi-particle dispersion in which groups of (usually, three or four) particles
are “connected” a priori and their evolving shape is investigated over time, here
connections between particles are dynamically activated over time within a fixed
reference ellipsoid.

The spatial proximity approach applied to particle dynamics results in a non-
trivial time-sequence of connections, because of the different trajectories followed
by particles due to turbulent motion. An example of a geometrical representation
of the particle dynamics is shown in Figure 7.3(a) as a contact sequence: each
connection between pairs of particles (depicted as small coloured circles) is indicated
as a black arc, meaning that particles are sufficiently close in space at that time.
In order to geometrically represent and investigate particle dynamics, the tools
from complex networks are here employed. In particular, nodes correspond to
levels, li, i.e. spanwise-groups of particles initially at the same y+, thus resulting
into Nv = Nl = 100 nodes. By doing so, information of particles starting at
the same wall-normal positions is enclosed in each node. Therefore, the metrics
extracted from the network increase their statistical significance because they do
not represent the dynamics of a single particle. For any time, a weight, Wi,j, is
associated to each link between a pair of nodes {i, j}, which takes into account the
total number of connections shared by particles belonging to levels li and lj. It is
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worth to emphasize that we here explicitly employ the terms connection and link
to indicate a relation between particles and nodes (that are groups of particles),
respectively. An example of a time-varying network is shown in Figure 7.3(b),
in which the particle dynamics represented in Figure 7.3(a) is geometrized into
time-evolving networks (where nodes correspond to levels and the link thickness is
proportional to link weight). As a result, particle dynamics is formally modelled
by means of a time-varying weighted network, that is a sequence of T +/∆t+ weight
matrices, defined as

Wi,j(t+) =
∑︂
g∈li

∑︂
q∈lj

Ig,q(aχ, t+)Fg,q (dg,q), (7.1)

where dg,q is the modulus of the Euclidean distance between particles g and q,
i, j = 1, ..., Nv correspond to node indices (with Wi,j = Wj,i), and χ = {x, y, z}.
In Eq. (7.1), the binary indicator function, Ig,q, is equal to 1 if a particle g lies
inside the ellipsoid of a particle q (or vice versa) at time t+, and 0 otherwise.
Accordingly, Ig,q explicitly depends on the ellipsoid size and time. Moreover, the
window function, Fg,q, is a weighting function taking into account the interaction
strength between particle pairs {g, q}. In this work, Fg,q depends on dg,q, namely
the interaction strength between particles g and q is quantified via the pairwise
Euclidean distance between g and q; however, other similarity or distance functions
can be generally adopted.

Weighting particle interactions. As discussed for the characterization of the
ellipsoid size, aχ, the choice of Fg,q is conditioned to the specific problem under
study. In this work, two configurations of window function Fg,q are explored.
First, in order to show the main features of the time-varying networks in a simple
case, we set Fg,q ≡ Fu = 1, ∀{g, q}, where superscript u indicates a uniform
window function; in other words, particle interaction is unweighted. In this way,
each connection is equally weighted and the connection criterion is only driven
by the ellipsoid size, {ax, ay, az} – i.e., the main criterion is to check if particles
come sufficiently close or not, at any time. As a result, for Fg,q = 1, each link-
weight exactly counts the total number of connections shared by particles belonging
to pairs of nodes. To grasp the concept, Figure 7.4(a) shows a particle q (with
coordinates Xq, Yq and Zq) and a 2D section of its ellipsoid (i.e., the ellipse) for
z = Zq, as well as the value of Fu = 1 for each point inside the ellipse.
In the second configuration, we assume the intensity of the interaction between two
particles decreases inversely proportional to the particle distance as

Fg,q ≡ Fw
g,q =

(︄
1

dg,q + 1 − 1
dmax

g,q + 1

)︄/︄(︄
1 − 1

dmax
g,q + 1

)︄
, (7.2)

where dg,q is the Euclidean distance between particles g and q, given that g and q
are connected (i.e., Ig,q = 1, see Eq. (7.1)). If the ellipsoid is centred on a particle
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7.2 – Time-varying network representation of particle dynamics

Figure 7.4: 2D section of the ellipsoid of a particle q (depicted as a red dot), with
coordinates Xq, Yq and Zq, and the values of (a) F ≡ Fu and (b) F ≡ Fw, for each
point inside the ellipse obtained for z = Zq.

q, dmax
g,q is the distance from q and the point of intersection between the ellipsoid

border and the straight line between g and q (the same criterion holds if the ellipsoid
is centred on the particle g). Figure 7.4(b) shows the values of the function Fw

g,q

for the ellipsoid centred in q, while the inset highlights the difference between dg,q

and dmax
g,q . In this way, the window function is bounded as Fw ∈ [0,1], where the

ellipsoid border represent an iso-value Fw = 0, while Fw = 1 is obtained if particle
positions coincide (see Figure 7.4(b)). In this case, the anisotropy of the flow is
explicitly considered as dmax

g,q depends on the length of the ellipsoid semi-axes. By
using a monotonically decreasing function for Fg,q, the smallest spatial scales are
more weighted than the largest ones, corresponding to the assumption that the
smallest turbulent scales play a more significant role in particle mixing.

Finally, it is worth to mention that, since the network structure depends on
particle relative positions, the accuracy of the interpolation method – employed to
evaluate particle position from the velocity field (see Appendix B.5) – might play a
role in the network statistics. In this work, a tri-linear interpolation is used as it was
found to be sufficiently accurate to provide reliable Lagrangian statistics [65, 191].
Since connections are established based on the proximity criterion in which the size
of the ellipsoid is proportionally adapted to the average distance between particles,
small variations in the exact particle positions are supposed to barely affect the
overall network structure. In the peculiar case in which a group of particles occupy
the same position, the ellipsoid-based approach will capture the particle mutual
proximity, either if particle distance are weighted (i.e., via Fw) or uniform (i.e.,
via Fu). In particular, the introduction of a non-uniform weighting function as
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defined in Eq. (7.2) can then shed light on the presence of such peculiar cases, as
the coincidence of particle positions correspond to Fw = 1 (see also Figure 7.4(b)).

To summarize, the weight matrices, Wi,j(t+), capture and inherit the pairwise
particle positions at any time, t+, by also retaining the information of the initially
y+ value of each particle. Specifically, a pair of nodes that is not linked at a given
time (i.e., Wi,j = 0) consists of two levels whose particles are not sufficiently close
in space (namely, a link is absent in the network topology). On the other hand,
non-zero Wi,j values quantify the intensity of the link between levels, namely the
extent to which particles are close in space. By doing so, nodes do not vary with
time (i.e., they still represent the same levels), while link weights depend on time. It
should be emphasized that the links in the time-varying network are weighted either
if the window function is uniform (i.e., F ≡ Fu = 1) or not (i.e., F ≡ Fw as in
Eq. (7.2)). In fact, the link weight takes into account the aggregated information
of connections between all particles in each level, either if particle interaction is
quantified via a uniform or non-uniform Fg,q function.

7.3 Lagrangian mixing analysis in a turbulent
channel flow

In this section, the results of the time-varying weighted network approach to
investigate turbulent mixing are reported for the two window function configura-
tions, namely F ≡ Fu = 1 (see Section 7.3.1) and F ≡ Fw (see Section 7.3.2).
Throughout the results, the relative effect of the mean flow advection and the ver-
tical mixing on particle dynamics is highlighted through the investigation of the
network features.

7.3.1 Temporal characterization of turbulent mixing
The structure of the time-varying weighted network, Wi,j(t+), is focused first.

Figure 7.5 shows the weight matrices at six characteristic times and their corre-
sponding network topology (for further visualizations see Movie 1 in the Supple-
mentary materials in Ref. [187]). The particle positions displayed in Figure 7.1(a)-
(d) corresponds to the networks shown in Figure 7.5(a),(b),(d) and (f), respectively.

Since particles are initially arranged in a uniform grid at x+ = 0 (see Fig-
ure 7.1(a)), each level is simply connected to levels close-in-space in the (y+, z+)
plane at t+ = 0, resulting in the diagonal weight matrix of Figure 7.5(a). For small
times (see Figure 7.1(b)-(c)), the particle dynamics is led by an almost pure advec-
tive motion and the particle swarm takes the shape of a bow-like surface (at the
very beginning, this surface reproduces the mean velocity profile, U(y+), in each
(x+, y+) plane). Accordingly, the weight matrix exhibits a predominant diagonal
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Figure 7.5: Time-varying weighted networks represented as weight matrices, Wi,j,
and their corresponding network topology for six representative times. The labels
of the matrix ordinates indicate the y+ value (relative to the closest wall, i.e. y+ ∈
[0,950]) of the corresponding level reported in the matrix abscissas, while colors
represent the weight of the links, Wi,j. Network visualizations are obtained through
the OpenOrd layout algorithm [130]; node colors indicate different y+ values and
range from red (i.e., level 1) to blue (i.e., level 100), while link weights are shown
in a grey-scale, where strong links are in black and weak links are in light-grey.

pattern, and the network shows a tree-like elongated structure in analogy with the
diagonal pattern of the corresponding Wi,j, as shown in Figure 7.5(b). However,
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7 – Lagrangian mixing in wall turbulence: a network perspective

wall-normal turbulent mixing enables out-of-diagonal links, and an increasing num-
ber of weak Wi,j values between initially distant levels appears in time (e.g., levels
l10 and l75 in Figure 7.5(c)).
Sufficiently far enough downstream from x+ = 0, all levels are interconnected with
each other (e.g., see Figure 7.5(d)), due to the progressively enhanced transversal
mixing. Nevertheless, the mean flow advection is still dominant over mixing at this
stage: the initial linear diagonal structure of Wi,j evolves into a three-square diago-
nal pattern, where the central square is bounded between y+ ≈ 500 and y+ ≈ 1400
(namely levels l27 and l74). This wall-normal coordinate corresponds to the y+ value
at which the mean shear, ∂U/∂y, sharply decreases towards zero (see Figure B.2 in
Appendix B.5). In fact, while particles initially located far from the walls experi-
ence an almost zero mean shear (thus moving downstream at a high mean velocity),
particles close to the wall tend to form two long tails due to the large mean shear
close to the wall (see Figure 7.1(c)). The advection process makes the tails pro-
gressively stretched along the walls as time increases, highlighting the effect of the
mean shear on particle swarm. Therefore, the three-square pattern emerges as a
consequence of the mean shear on the particle dynamics. From the point of view of
the network topology, turbulence mixing – by enabling links between distant levels
– has the effect to induce a clustered topology, namely a network geometry in which
nodes tend to aggregate with each other. In fact, as illustrated in Figure 7.5(d),
the nodes of the network at t+ = 2327.5 tend to group based on their wall-normal
coordinate, equivalently to the three-square pattern of Wi,j.
Finally, at some time long after, turbulent mixing becomes as effective as stream-
wise advection. This is first manifested as a smoothing in the three-square pattern
of Wi,j (Figure 7.5(e)), and later as a random-like structure (Figure 7.5(f)). This
final state represents the Taylor dispersion regime (see Figure 7.1(d)), in which the
streamwise particle distribution approaches a Gaussian distribution (see also Movie
2 in the Supplementary materials in Ref. [187]). In this asymptotic stage, the net-
work topology develops towards a strongly aggregated pattern with a random-like
layout.

In order to highlight the richness of the information contained in the weighted
network as time evolves, a scalar metric, Ep ≡ ∑︁

i

∑︁
j Wi,j/2, is introduced that is

equal to the total number of particle connections established at each time. Fig-
ure 7.6 shows the behaviour of Ep as a function of t+, in which it is possible to
discern three temporal regimes:

I) The first regime ranges in t+ ∈
(︂
0, T +

I

]︂
, where T +

I ≈ 450 is the time-scale in
which particle dynamics is primarily led by streamwise advection. Therefore,
in this first regime particles are arranged in a bow-like shape, as shown in
Figure 7.1(b). Since the wall-normal mixing is the main factor responsible
for the activation of distant inter-levels links, in the first regime the total
number of links is almost unchanged and only particles initially close in space
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Figure 7.6: Total number of connections, Ep, as a function of time, t+. Three
regimes are highlighted and distinguished by T +

I ≈ 450 and T +
III ∼ 5200. The two

insets show the particle swarms in the first and third regimes, where particle colors
indicate their starting level (as in Figure 7.1(a)). The values of Ep at the six times
reported in Figure 7.5 are also illustrated as coloured circles.

are connected with each other (see also Figure 7.5(b)-(c)).

II) As time increases, the effect of mixing on particle dynamics progressively
strengthens and Ep(t+) decreases up to t+ ≈ 5200. In fact, if two particles
are connected (i.e., each particle lies inside the reference ellipsoid of the other
one), wall-normal mixing tends to move the two particles apart in the wall-
normal direction. Accordingly, particle arrangement tends to deviate from
the bow-like profile (typical of the first regime), and particles (dispersing in
the y+ direction) come across a region in which the particles are less dense
(e.g., see Figure 7.1(c)). As a result, in this second regime, Ep(t+) decreases as
turbulent mixing progressively intensifies its effect on particle dynamics. In
other terms, the second regime is an intermediate stage between an advection-
dominant and a mixing-dominant regime.

III) At some time long after, the advection process and the transversal mixing are
balanced and the particle dynamics approaches the Taylor asymptotic state.
Hence, the third regime is characterized by a nearly constant value of Ep(t+),
because the particle swarm spreads in the streamwise and spanwise directions
without showing any spatial pattern (see Figure 7.1(d)). According to our
analysis, this third regime starts at time T +

III ≈ 5200, corresponding to the
time-scale from which Taylor’s dispersion analysis can be applied [189]. By
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comparing T +
III and the value of the integral wall-normal (Eulerian) mixing

time-scale, which is approximatively equal to 14200ν/u2
τ (see Section 7.2), we

found that Taylor’s analysis holds for T +
III/14200 & 0.37 which is in excellent

agreement with the value 0.4 reported in literature [188].

It is worth noting that, while the values of the integral wall-normal mixing time-
scale and T +

III can be estimated from a dimensional analysis of the conservation
equation of a tracer, the value of T +

I (i.e., the end of the first regime) is non-
trivial. Indeed, T +

I is governed by a transient dynamics in which the magnitude
of the advection and mixing terms is not easy to quantify. By means of particle
geometrization into networks, however, it is possible to easily distinguish the onset
of both transient (i.e., T +

I ) and long-term regimes (i.e., T +
III). It should also be noted

that the chosen time resolution (∆t+ = 4.75) is sufficiently accurate for the present
analysis, as the network features smoothly evolve over time (see Figure 7.6).

To summarize, the network structures are directly affected over time by wall-
normal turbulent mixing or, in general, by the interplay between mixing and advec-
tion. In particular, the effect of turbulent mixing on particle dynamics is captured
by the total number of connections, Ep, which is able to reveal to which extent wall-
normal mixing breaks the initial particle arrangement towards the Taylor asymp-
totic state.

Further insights on wall-normal turbulent mixing

The total number of connections, Ep(t+), is a useful and simple metric to effec-
tively quantify the relative intensity of turbulent mixing and advection on particle
dynamics. Indeed, the investigation of Ep provides concise insights into the en-
semble behaviour of all levels at each time, and it enables to distinguish different
advection-mixing regimes. Nevertheless, from the weight matrices Wi,j it is possible
to extract much more detailed information. In fact – as shown in Figure 7.5(b)-(c)
where low Wi,j values appear out of the main diagonal – the key effect of mixing
is to promote the activation of links between nodes corresponding to distant lev-
els (e.g., l1 and l100). Since particle geometrization into the network framework is
based on the spatial proximity, the appearance of a link between two distant lev-
els represents a peculiar event, which is important information, for instance when
particles are involved in chemical reactions.

In order to characterize the appearance of such peculiar events, in Figure 7.7(a)
we show the temporal behaviour of Wi,j(t+) for six representative pairs of nodes.
The node pairs selected involves levels close to the two walls (i.e., l1 and l100), the
level close to the channel center (i.e., l50) as well as an intermediate level, l25. If
we focus on how connections between particles in the same level change over time
(that is the main diagonal of Wi,j, with i = j), link activation starts as expected at
the initial time (both for levels close to the wall, l1, and at the center, l50) and the
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weight decreases towards an asymptotic average value. For the level pair {50,25}
– namely particles initially started at y+ ≈ 940 and y+ ≈ 465, respectively – link
activation starts quickly in time, because particles belonging to l25 and l50 do not
experience a strong velocity gradient and turbulent mixing enables their connection
after a short time interval. A link between the pair {1,25}, instead, appears only
in the second regime at t+ ≈ 570, because during the first regime particles in l1
experience a higher mean shear than particles in l25, thus only when the mixing is
strong enough a link appears between them.
Unexpectedly, as shown in Figure 7.7(a), a link between the two furthest levels,
{1,100}, appears before a link between levels {1,50}. This can be explained by
recalling that if particles in the bow-like swarm are moved apart due to wall-normal
mixing, they come across a less dense region of other particles. Particles in l1
are hence more likely to connect with particles in l100 than particles in level l50,
because when W1,100 > 0 there is not spatial proximity between particles in l1
and l50 as particles in l50 are mainly located far downstream (so that W1,50 =
0). Therefore, link activation strongly depends on the flow features, namely both
mixing and advection, and it reveals non-trivial results. In particular, since each
node represents a spanwise-row of 100 particles, the activation of a link between two
nodes takes into account all the pairwise connections between all the 100 particles
in each node. By doing so, each link captures and highlights – through its weight
– ensemble information about the dynamics of the spanwise-row set of particles in
each node. It is worth noting that, for simplicity, we only explored the inter-relation
between pairs of nodes, namely 2−tuples, but the weighted networks comprise the
information of all n−tuples of nodes.

Finally, we focused on how the presence of different levels inside each ellipsoid
varies over time due to the effect of mixing. In fact, any particle belonging to a level
li is connected – due to spatial proximity – with a set of other particles belonging to
different levels lj, at each time. This is illustrated in Figure 7.2 where the presence
of different levels inside the ellipsoid of a reference particle is highlighted by different
particle colors. To quantify such variability at any time, we evaluated the standard
deviation, σli , of all the indices j = 1, . . . , Nv of levels lj found inside the ellipsoids
of all particles belonging to a reference level, li. In other terms, we quantify the
variability of the presence of particles belonging to levels lj, inside the ellipsoid of
particles in li. For example, in the sketch of Figure 7.2, a higher standard deviation
value would be obtained for the reference particle in green at time t2 than at time
t1, because at t2 there is more variability of particle colors (indicating different
initial levels). In this way, we are able to quantify the efficiency of mixing between
different levels.
In Figure 7.7(b) we show σli as a function of time for five representative levels,
li. Due to the progressive strengthening of turbulent mixing, the values of σli

generally increase with time. More in detail, since in the first regime advection
tends to move particles apart in the streamwise direction, levels close to the walls

155



7 – Lagrangian mixing in wall turbulence: a network perspective

Figure 7.7: (a) Time evolution of Wi,j for six pairs of levels. Each horizontal bar
corresponds to an entry of the Wi,j matrices, while link activation is highlighted
by horizontal coloured bands, where color variations indicate the change of the
link weight as log10(Wi,j). (b) Standard deviation, σli , of different levels inside
the ellipsoid of particles in five representative levels. The horizontal dashed line
indicates the standard deviation from a discrete uniform distribution in the interval
[1, Nv], namely σl,u ≈ 28.87.

display lower values of σli because they are unlikely to connect with other levels
at higher y+ (see Figure 7.1(b)). For long times, instead, all the σli approach the
value of a uniform distribution, σl,u, because of strong turbulent mixing. However,
only levels close to the wall (i.e., l1 and l100) show σli values larger than σl,u, as
a consequence of their preferential linking with very distant levels (as previously
discussed). It should be noted that the value of σl,u can be analytically computed as
the standard deviation of a uniform (discrete) distribution between 1 and Nv = 100,
that is

√︂
(N 2

v − 1)/12 ≈ 28.87. Moreover, pairs of levels at a similar distance from
the wall (i.e., pairs 1 − 100 and 20 − 80) show analogous behaviour, since they
experience similar dynamics.

Network sensitivity on the ellipsoid size

To conclude this section, a sensitivity analysis of the network features is per-
formed for different size of the ellipsoid. Due to its ability to easily capture and
summarize important features of the time-varying weighted network, the total num-
ber of connections, Ep, is focused. For a fixed number of nodes, Nv, the behaviour of
Ep(t+) – and in turn of the weighted network – basically depends on two modelling
parameters: the number of particles in each level, and the constant of proportional-
ity, α. Besides, the DNS spatial resolution could affect the network structure, since
a coarse spatial resolution implies an inaccurate velocity field and, in turn, a poor
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Figure 7.8: (a) Relative error (in percentage), |1−n2
p,z·(Ep)np,z>1/(Ep)np,z=1|, between

Ep for np,z = 1 (reference case) and n2
p,zEp for np,z > 1. (b) Effect of α on Ep(t+),

where Ep,I and Ep,III are the average value of Ep(t+) over t+ < T +
I and t+ > T +

III,
respectively. Dashed lines indicate the scaling as α2 and α3.

particle position resolution. However, the adopted spatial resolution is sufficient to
provide a reliable particle position evaluation [65, 191].

To assess the robustness of the proposed approach, a parametric analysis on the
number of particles in each level is first performed by keeping α = 0.5 constant. In
the reference case, each level comprises 100 particles, and by decreasing this value
(keeping the number of nodes Nv = 100 constant), the total number of particles
released in the channel is reduced, thus weakening the statistical significance of the
results. Here we decrease the number of particles initially released in the domain
along, z, by a factor np,z = {2, 4, 10}, corresponding to a total number of released
particles equal to 104/np,z. By considering a fraction 1/np,z of the total number of
particles, the decrease in the total number of connections Ep(t+) is proportional to
1/n2

p,z. Figure 7.8(a) shows the relative error (in absolute value and in percentage)
between Ep for np,z = 1 (reference case) and n2

p,zEp for np,z > 1. As expected,
the curve of Ep(t+) scales down from the reference case proportionally to 1/n2

p,z,
with a relative error below 10%. In fact, a decrease in the number of particles in
each node implies a reduction of the total number of possible connections, which is
proportional to the square of the number of particles (e.g., see Eq. (3.4)).

The effect of different α values, instead, is to vary the size of the reference
volume for the activation of connections between particles. Hence, a higher (lower)
value of α increases (decreases) the possibility that particles connect with each
other. By keeping np,z = 1 and varying α in the range (0,1], the curve of Ep(t+) is
scaled but the values of T +

I and T +
III do not change. However, Ep(t+) does not scale
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as α3 at any time, as one would expect by a 3D stretching of the ellipsoid, but the
scaling depends on the regime. In fact, as shown in Figure 7.8(b), the mean value
of Ep(t+) for t+ < T +

I (namely Ep,I) scales as α2, because in the first regime only
a fraction of each ellipsoid is occupied by particles, resulting from the intersection
of a bow-like surface with an ellipsoidal volume. Differently, the mean value of
Ep(t+) for t+ > T +

III (i.e., Ep,III) scales as α3, because in the third regime particles
are spread in all directions and particles occupy the entire volume of each ellipsoid
(in a uniform way, as shown in Figure 7.7(b)).

7.3.2 Particle distance-weighted network analysis
The time-varying network built by equally weighting each particle connection

(i.e., F ≡ Fu = 1) shows several remarkable features of the turbulent dispersion
over time, as well as its effect on particle dynamics. However, in order to explicitly
account for the pairwise distance between particles, the results for a non-uniform
weighting function, Fw, are here reported. We recall that Fw

g,q is a monotonically
decreasing function of the pairwise distance dg,q, as defined in Eq. (7.2) and il-
lustrated in Figure 7.4(b). The ellipsoid is still used as a spatial proximity limit
for particle connections (so that particles outside each ellipsoid are not considered
since Ig,q = 0), but now particles at smaller spacing inside each ellipsoid are more
weighted (see Figure 7.4(b)).

Figure 7.9 shows the weight matrices, Wi,j, for the Fw case at the same six
representative times of Figure 7.5. As it emerges from the comparison of Figure 7.9
and Figure 7.5, the binary structure of networks for Fw at any time is the same
as for Fu. In fact, the diagonal and three-square patterns are also found for Fw

in the first and second regime, respectively (see Figure 7.9(b)-(d)), while for large
times patterns do not emerge (see Figure 7.9(f)). However, by using a non-uniform
window function, the values of the link weights (i.e., the link colors in Figure 7.9)
for the Fw case tend to be more intense along the diagonal, as shortest connections
are weighted more.

In order to further characterize the time-varying weighted networks in both
configurations, Fu and Fw, four network metrics are investigated. The four metrics
are selected in order to progressively highlight the main network features, ranging
from a local (i.e., single nodes) to a global (i.e., the entire network) point of view: (i)
the node centrality by evaluating the average strength, S; (ii) the relation between
node pairs by evaluating the assortativity coefficient, r; (iii) the relation between
node triples by evaluating the average clustering coefficient, C; and (iv) the relation
between node n−tuples (of higher order) by computing all the shortest path length
via the average path length, L. The behaviour of these four metrics is shown in
Figure 7.10 as a function of time, for both window function configurations, Fu and
Fw.
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Figure 7.9: Time-varying weighted networks represented as weight matrices, Wi,j,
for a non-uniform window function, Fw, at six representative times. Colours repre-
sent the weight of the links, Wi,j (for comparison with a uniform window function
see Figure 7.5).

Average node strength. Figure 7.10(a) shows the average strength, S(t+), of
the networks as a function of time (overline indicates average over all nodes). The
strength of a node i in a weighted network quantifies the intensity of the relation
between a node i and all other nodes (see Eq.(3.5)). In the case Fu = 1, S is
related to the number of particle connections, Ep, as S = 2Ep/Nv. The behaviour
of S as a function of t+ for the two cases of Fg,q is essentially the same, because (as
discussed in Section 7.3.1) the effect of turbulent dispersion on particle dynamics
is fully captured by the network structure corresponding to Fu = 1. However, the
values of S(t+) for the case Fu are globally higher (about two order of magnitude)
than the corresponding values for Fw (note that in Figure 7.10(a) there are two
ordinate axes), as Fw ranges in the interval [0,1].
The difference in the temporal behaviour between the two F configurations is more
evident in the first and the second regime, where S for the Fw case (red curve in
Figure 7.10(a)) decreases more rapidly. In the first regime, advection is dominant
over mixing and most of the links are present between nodes initially close in
space (i.e., along the diagonal of Wi,j). However, wall-normal turbulent mixing
promotes the activation of links between initially distant nodes, as emerges from
the appearance of out-of-diagonal links in Figure 7.5(b)-(c) and Figure 7.9(b)-(c), as
well as in the increase of standard deviation in Figure 7.7(b). These out-of-diagonal
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Figure 7.10: Network metrics as a function of time, t+, for the two cases of window
function, Fu (black lines) and Fw (red lines). (a) Average strength, S; the red
ordinate axis on the right refers to the range of S for the Fw case. (b) Weighted
assortativity coefficient, r. (c) Average clustering coefficient, C. (d) Average path
length, L, and number of disconnected nodes in the networks (blue dotted line).
The inset in panel (d) is a zoom of the decreasing behaviour of L with time. In all
panels, coloured circles refer to the times reported in Figure 7.9, while background
colors highlight the three advection-mixing regimes.

links correspond to connections between particles that are distant in space within
an ellipsoid, thus corresponding to very low Fw

g,q values (see Figure 7.4(b)). In fact,
if a particle g enters inside the ellipsoid centred in a particle q at a given time (with
g and q belonging to distant initial levels), it is very likely that g is close to the
border of the ellipsoid of q (where Fw

g,q = 0). On the other hand, for the Fu case,
connections between particles either close or distant in space are equally weighted.
Therefore, the activation of distant links makes the values of S decrease faster for
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the Fw case than for the Fu case.

Assortativity coefficient. Following the concept of strength, in Figure 7.10(b),
the assortativity coefficient, r, is shown as a function of t+ (see Eq. (3.9)). We
recall that a network is said to be assortative if r > 0 or disassortative if r < 0;
if r ≈ 0 the network is said to be non-assortative. In both Fg,q configurations,
r(t+) similarly decreases from approximatively 0.8 at small times to zero at large
times. In the first regime (especially at short times) nodes are primarily linked with
other similar nodes, which implies that the networks are assortative; on the other
hand, for long times, the networks lose any pattern, thus showing a non-assortative
behaviour.

Clustering coefficient. The third metric analysed is the clustering coefficient,
C (see Eq. (3.7)). Figure 7.10(c) shows the average clustering coefficient, C(t+), for
the configurations Fu (black curve) and Fw (red curve). We recall that the cluster-
ing coefficient quantifies the probability that two randomly chosen neighbours of a
node i (i.e., two nodes linked to i) are also neighbours, thus ranging in the interval
[0,1]. In particular, a weighted clustering coefficient takes into account the interac-
tion intensity between nodes comprising triplets [93]. As shown in Figure 7.10(c),
C increases to one for both configurations as time increases. In fact, for large times
particles are well mixed with each other and it is very likely that nodes form tri-
angles, namely nodes are locally very well inter-connected. The effect of weighting
particle interactions via Fw is to enhance the local cohesiveness, especially in the
first regime where most of the connections are between particles close in space. As
a result, the values of C are the highest in the Fw case, for which spatial proximity
plays a more significant role.

Average path length. Finally, the average path length, L(t+), namely the av-
erage of all shortest path lengths in the network (see Eq. (3.11)), is investigated.
In general, a cost, dG

i,j, is assigned to each link of the shortest path between node
i and j. Here links are weighted according to the values of Wi,j, which represents
the intensity of spatial proximity between nodes, so that higher Wi,j implies closer
distances. Accordingly, the shortest paths for the evaluation of L(t+) are computed
by using a weighting cost W/Wi,j, where W is the average link weight of the net-
works at any time [192]. The entries of the weighted matrix, Wi,j, are normalized
through W in order to consider the change of Wi,j range as time increases (e.g., see
the colorbar ranges in Figure 7.5 and Figure 7.9). Therefore, a high weight (i.e., a
short distance between particles/nodes) means a low cost of the path.
Figure 7.10(d) shows the behaviour of L as a function of t+. The networks during
the first regime are able to display high L values, since two nodes are reachable
via a high-cost path. By inspecting the values of dG

i,j we found that outliers in
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L for t+ ∈ [20,50] are due to the nodes starting very close to the walls (namely,
li with i = {1,100}). In the first regime, nodes starting very close to the walls
are disconnected from the other nodes in the network (see blue-dotted curve in
Figure 7.10(d)), namely dG

1,j = dG
100,j = ∞, because of a strong effect of mean

shear on particle positions (see also Figure 7.5(b) and Figure 7.9(b)). Since dis-
connected nodes are conventionally excluded from the computation of the average
path length [80], the peaks in L appear when nodes l1 and l100 are linked to the
other nodes in the network, i.e. at t+ ≈ 25 and t+ ≈ 40, respectively. From the
point of view of the network topology, the re-attachment of the disconnected nodes
implies high-cost shortest paths, as the values of dG

i,j for nodes i = {1,100} are two
orders of magnitude larger than dG

i,j for all the other nodes. As a consequence, very
high values of L are detected. It should be noted that, although the effect of the
mean shear is evident in the first regime, disconnected nodes are not expected for
t+ → 0, as follows from the initial particle arrangement.
For long times, instead, L tends to decrease as an effect of turbulent mixing. By
comparing the two configurations, Fu and Fw, the values of L in the first two
regimes are higher for the Fw case, because (as mentioned for the assortativity
and the clustering coefficient) the window function highlights the local mixing by
enhancing the spatial proximity. In the third regime, instead, both Fg,q config-
urations approach the same constant L asymptotic value (due to the link cost
normalization).

To sum up, the analysis of the metrics at different network levels (from the single
node, to node pairs and triples, as well as the shortest paths) of the time-varying
weighted network, is able to unveil both the main features of particle dynamics and
the presence of extreme cases. In particular, by exploiting a non-uniform function
for particle interaction intensity, it is possible to highlight the effects on particle
dispersion due to the different spatial proximity between particles.

7.4 Summary and future outlooks
The proposed Lagrangian network-based approach is exemplified by means of a

DNS of a turbulent channel flow, where the dynamics of fluid particles is captured
through a spatial proximity criterion. A time-varying weighted network is built
by assigning to each node a spanwise-row of particles initially started at the same
wall-normal coordinate, while link weight depends on the particle proximity at each
time. The resulting time-varying weighted network is fully able to inherit the non-
trivial time sequence of connections between (groups of) particles, which emerges
due to turbulent motion. Indeed, we can identify in a straightforward way the
characteristic regimes of particle dynamics, the appearance of peculiar events (e.g.,
the time of first contact between initially distant levels), as well as the intensity
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of wall-normal turbulent mixing (quantified by the total number of connections).
Accordingly, the potential of the Lagrangian-based networks is twofold, since the
time-varying weighted network – represented by the weight matrices – captures in
a unique framework both the qualitative spatial features of the particle swarm and
the strength of turbulent mixing. Our approach is computationally affordable for
a typical number of tracers of the order of 104 − 105 (see Appendix A), and it is
also suitable for experimental techniques such as particle tracking velocimetry.

Thank to complex network versatility, particle geometrical representation into
time-varying networks can easily be extended to other setups and/or configurations.
For instance, other turbulent flows can be investigated, such as flows in presence
of thermal inhomogeneity, density stratification (i.e., buoyancy effects) or mass
diffusivity (i.e., different Schmidt numbers). Besides passive scalars, other tracers
as inertial particles can be employed in future works, thus also highlighting the
feedback effect of particle inertia on turbulence. The effect of a different Reynolds
number on the network features is another key issue that will be focused on future
research. Indeed, the Reynolds number plays a key role to quantify the relative
intensity of turbulent mixing and mean flow advection, which needs to be addressed.
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Chapter 8

Conclusion and future
perspectives

The current possibility to access a huge amount of numerical and experimental
data of turbulent flows, have paved the way to the development of novel theories
and methodologies. Complex networks, in particular, have revealed to be a powerful
tool that is able to effectively take advantage from big data, by unravelling non-
trivial issues in many research areas including fluid dynamics. Indeed, in the last
two decades, complex networks have broadened the horizons of classical statistical
analysis, by providing a different perspective – made up of interconnections between
constitutive elements – on complex systems.

By exploiting the potential of complex networks theory, the spatio-temporal
characterization of wall-bounded turbulence was focused as the main aim of the
present Thesis. To put our aims in an interrogative sentence: how can wall tur-
bulence characterization benefit from network science? And, which additional in-
formation do complex networks provide with respect to classical statistics? These
issues were tackled by exploring three possible formats of raw-data, namely (i)
one-point time-series, (ii) Eulerian spatio-temporal fields and (iii) Lagrangian par-
ticle trajectories. According to each data format, three approaches were carried
out, namely a visibility graph analysis of time-series, a spatial network approach
based on two-points correlation, and a time-varying network approach to particle
dispersion. Fully developed turbulent channel flows and a passive scalar plume in
a turbulent boundary layer are the two flows that were focused. In particular, nu-
merically simulated data were mainly exploited in our analyses, but experimental
measurements were also addressed. In fact, although they are limited to low or
moderate Reynolds numbers, numerical simulations provide a unique instrument
to gain high-resolution turbulence data both in space and time. For each of the
three pursued approaches, substantial efforts were carried out to highlight turbu-
lence features through the physical interpretation of the network structure and ad
hoc selected network metrics.
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A summary of the main contributions obtained in the Thesis is reported as follows.

Contributions to time-series analysis:

• For the first time, a visibility network-based analysis is carried out to
characterize (i) the wall-normal structure of the velocity field in a tur-
bulent channel flow, and (ii) the dispersion of a passive scalar plume
in a turbulent boundary layer. By means of the network analysis, two
important features of a time-series are highlighted: the occurrence and
(relative) intensity of peaks and the presence of small fluctuations. In
this way, higher-order information on the temporal structure of turbu-
lence time-series are captured through the visibility algorithm. Indeed,
concerning extreme events, we are able to straightforwardly discern be-
tween peaks and outliers and their temporal occurrence in the signals.
Differently from higher-order statistics relying of the series PDF (e.g.,
the kurtosis), the visibility networks – and, in turn, the related metrics
– strongly depend on the temporal structure of the signals.

• Particular attention is paid in this work to the physical interpretation
of the network metrics with respect to the flow dynamics, so that spe-
cific trends of the network metrics are related to turbulent mechanisms
involving the channel flow and the plume dynamics. With this aim, sub-
stantial efforts are made to relate the network features to the temporal
structure of the series. This fundamental issue is often disregarded and
minimized in the current literature, since the meaning of the metrics
is often merely interpreted as a network feature rather than a signal
feature.

• Limitations of the study are mainly related to the need of properly
time-resolved time-series, either numerically of experimentally. From
the point of view of the visibility algorithm, a computationally efficient
®MATLAB code is developed in this work to speed up the network
construction (if a large datasets of time-series have to be mapped into
networks). On other hand, the main advantages of the visibility algo-
rithm rely on its extremely simple implementation as well as, different
from other techniques, the lack of any a priori setting parameter.

Contributions from the Eulerian viewpoint:

◦ A spatial network analysis is proposed for the first time to spatially inves-
tigate a three-dimensional turbulent channel flow through a correlation-
filtering approach. Although the idea to threshold the (Pearson) correla-
tion coefficient (by retaining its highest values) to built spatial networks
was borrowed by climate network analysis, here a 3D study of an inho-
mogeneous and anisotropic turbulent flow is newly introduced.
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◦ In this work, the idea typical of climate analyses to assign the nodes to
specific spatial locations and activate links via a threshold of the highest
correlation coefficients is extended for the first time to a 3D turbulent
flow setup. Accordingly, we introduce the idea that a network node
corresponds to a finite volume in a spatial 3D domain. This conceptual
extension is motivated by the combination of the flow inhomogeneity
and the three-dimensional domain investigated.

◦ By focusing on the streamwise velocity field, the spatial network anal-
ysis reveals the presence of inter-wall and intra-wall teleconnections(in
all directions) between spatially extended regions. The appearance of
teleconnections between distant regions in the domain is one of the most
significant results, since teleconnections emerge due to the ability of
complex networks to retain the spatial information of high correlation
coefficients. This information, instead, is typically hidden by the spatial
averaging of the correlation coefficient values. Additionally, the most
important nodes in the network are found to group in space and they
result to be associated to the persistence of streamwise velocity streaks.

◦ The main limitations to this approach are due to the size of the re-
sulting spatial network, since the number of nodes correspond to the
number of spatial locations (i.e., grid points). The computational and
storage cost is therefore the main drawback of the method (e.g., see Ap-
pendix A). To partially overcome this issue, different computational (and
conceptual) strategies can be employed. Another important issue on the
method concerns the temporal length of the signals used for evaluating
the correlation coefficient. Due to the exploratory nature of our work, a
time window that is higher than one channel flow through time is used.
Since turbulent features – such as coherent motion – display their own
temporal living scales, a more detailed sensitivity analysis on the total
temporal window surely deserves further investigation.

Contributions from the Lagrangian viewpoint.

I A geometrical representation of Lagrangian particle dispersion in a tur-
bulent channel flow is provided, for the first time, by exploiting a time-
varying network approach. The novelty of our work with respect to
the available literature is twofold. From one side, we introduce a time-
varying network approach to geometrically represent particle dispersion,
which highlights the transient phenomena of particle mixing and advec-
tion. In other network-based works, the temporal evolution of particle
dynamics does not explicitly emerge, as links are evaluated in a time
interval. On another side, for the first time we employ the network
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framework in a three-dimensional, inhomogeneous and anisotropic tur-
bulent flow. Most of the existing works, instead, have mainly focused on
two-dimensional setups or surrogate flows of geophysical applications.

I To build our network-based framework, a well-established spatial prox-
imity criterion is employed between particle pairs. The present formu-
lation can be viewed as a generalization of the existing proximity-based
network approaches and allows one to quantify the intensity of the par-
ticle interaction via a weighting function. This can be effectively used
in many contexts (e.g., in chemical reactions) in which particles actively
interact with each other.

I This work, therefore, contributes to provide a unique framework that
is able to retain non-trivial information on particle dispersion. First,
characteristic mixing-advection regimes can be easily identified through
the network approach. Specifically, the identification of the transient
time in which the advection-dominant regime ends, is a considerable
outcome of our work. Moreover, by means of the Lagrangian network
formulation, different metrics can be exploited to highlight the effects
and intensity of turbulent mixing on particle dynamics.

I As for the previous network methodologies, the main limitation to this
approach could be represented by the computational cost, since it is
required to build a graph (with size equal to the number of particles)
at each time. However, in this case, we show that a limited number
of particles and a rather large time step are sufficient to capture the
essential features of turbulent mixing with smooth temporal behaviours
of the metric values. As a result, our network approach is sufficiently
robust to allow a reduction of the computational cost, thus overcoming
the main drawback of this formulation.

In conclusion, the complex networks show the advantage to highlight spatial and
temporal features of turbulent flows that would be difficult to capture by means of
other techniques. In fact, spatio-temporal insights into the turbulence mechanisms
can be unravelled – differently from classical approaches – by focusing on the extent
to which the constitutive elements that represent a turbulent flow (e.g., time-series
or particle trajectories) are inter-related with each other. The resulting complex
texture of interconnections is thus able to retain advanced information with respect
to other classical statistics, e.g., the temporal structure of time-series that is lost by
PDF-based statistics, as well as the directionality of (high) cross-correlation values
that is typically lost through the average correlation coefficient.

Future outlooks. The aforementioned contributions, together with case by case
limitations, represent different pieces of a broader picture of turbulent flow anal-
ysis via complex networks. Accordingly, the present Thesis provides one of the
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first efforts to bring together two large research worlds – i.e., turbulence and net-
work science – but several additional work deserves to be carried out and numerous
achievements can then come forth. First, a thorough study to relate the network
metrics and spatio-temporal aspects of the flow dynamics needs to be addressed,
for all the three approaches. By providing an interpretation of the networks in
the view of the main wall-normal turbulence features, this issue starts to be faced
in this work, but still deserves further fluid dynamics insights. The physical in-
terpretation of network metrics can then help in the identification and character-
ization of coherent motions and extreme events, which represent crucial topics in
turbulence research. Additionally, a deeper understanding of the relation between
spatio-temporal flow fields and the corresponding complex networks, can foster the
development of novel low-order methods to reduce the computational costs (which
can be particularly useful in spatial network analysis).

The ability of complex networks to retain local and global information of the
mapped turbulent fields, can allow one to exploit network tools for flow modelling
and control. In fact, thanks to the wide spectrum of metrics developed so far in
network science, critical regions (e.g., high turbulence intensity) can be identified
for flow control, especially in the Eulerian framework. Moreover, the network for-
mulation can turn out to be a synthetic tool for turbulence modelling in different
contexts, such as the dispersion of particles and persistent scaling laws. In view of
this, the visibility and Lagrangian time-varying approaches could represent suitable
frameworks for the development of network-based turbulence models.

An extension of the present work can also involve higher-order network formu-
lations, namely the analysis of turbulent flows by means of multilayer networks. In
fact, the multilayer approach can be pursued, e.g., if multivariate time-series are
available or, in general, to highlight the cross-relation between networks built on
different quantities (e.g., different velocity components).

Finally, although this Thesis focuses on wall turbulence, the network-based anal-
ysis can be extended to other flow configurations. For example, turbulent flows with
thermal or density inhomogeneity can be focused for each of the three approaches,
either through numerical simulations or experimental measurements (e.g., involving
geophysical turbulence). Multiphase flows can also be addressed, especially in the
Lagrangian network framework in which particles with different chemical-physical
properties (e.g., particle inertia) can be employed to investigate turbulent mixing.
Additionally, unsteady and transitional turbulence can be studied by means of com-
plex networks. The spatio-temporal variations in the flow fields due to unsteady
motion or a transition, indeed, could be captured by sudden changes in the net-
work metrics, as it has been found out in other research areas, such as financial
time-series.

In conclusion, due to the versatility and wide range of possible applications,
the proposed network-based approaches can lead to relevant implications in several
industrial and environmental fluid dynamics contexts.

169



170



Appendix A

Computational cost breakdown

In order to provide a quantitative overview of the computational costs asso-
ciated to each of the three approaches carried out in this work, a report of the
computational time to build and store the adjacency matrix is exemplified in Ta-
ble A.1. The size in terms of number of nodes, Nv, and time-frames employed,
T/∆t, are selected to be the same as those in the main analyses.

Table A.1: Computational cost breakdown for different network approaches. The
size, Nv, and times, T/∆t, correspond to those pursued in the network analysis.
Performances are evaluated for a machine with an Intel® Core™ i7-4790, CPU 3.60
GHz, 8 cores, 32 GB RAM, ®MATLAB R2018a.

Visibility Eulerian Lagrangian

Nv
103 105

4 × 106 104

T/∆t 5 × 103 104 3.2 × 103 3.2 × 102

Network building
time (seconds)

4.5 × 10−3 5.5 × 10−1 7.5 × 105 1.5 × 106 6.8 × 103 6.8 × 102

Storage Ai,j (MB) 2.5 × 10−2 8.5 × 10−1 8 × 103 11 × 103 5 × 103

(2.5×102)
5.8 × 102

(8.1)

For the visibility approach, time-series extracted from a normal distribution
(representative of the typical computational times of turbulence signals) are mapped
into networks via the optimized code in Ref. [128], and times are averaged over 103

realizations. For the Eulerian approach, performances are evaluated for θ = 0.8
and 0.7 for T/∆t = 5000 and 10000, respectively, and the computation times in-
clude the saving operation in the hard drive. Finally, for the Lagrangian case,
performances are evaluated for α = 0.5 (as in the main analysis). It should be
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noted that the computational times reported in Table A.1 are obtained for a serial-
computing approach. However, a distributed-computing approach (i.e., by running
multiple routines concurrently) can lead to a significant reduction of computational
costs. For instance, in the Eulerian case, times have been approximatively halved
by running two concurrent ®MATLAB workspaces.
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Appendix B

Description of turbulent channel
flow DNSs

Some of the contents presented in this Appendix have been previously published.
Below are provided the references:

G. Iacobello, S. Scarsoglio, J.G.M. Kuerten, and L. Ridolfi. “Spatial characteriza-
tion of turbulent channel flow via complex networks”. In: Physical Review E 98.1
(2018), p. 013107. doi: 10.1103/PhysRevE.98.013107.

G. Iacobello, S. Scarsoglio, and L. Ridolfi. “Visibility graph analysis of wall turbu-
lence time-series”. In: Physics Letters A 382.1 (2018), pp. 1–11. doi: 10.1016/j.
physleta.2017.10.027.

G. Iacobello, S. Scarsoglio, J.G.M. Kuerten, and L. Ridolfi. “Lagrangian network
analysis of turbulent mixing”. In: Journal of Fluid Mechanics 865 (2019), pp. 546–
562. doi: 10.1017/jfm.2019.79.

B.1 Introduction
This Appendix contains details on the direct numerical simulations (DNSs) of

turbulent channel flow at different Reynolds numbers, exploited for the computation
of spatio-temporal fields used in the network analysis. Four different simulations
are performed according to the frictional Reynolds number, Reτ .

Table B.1 summarizes the main features of each dataset as used in the network
analysis, as well as the relative chapter of the results in which the data are used.
In each section of this Appendix, details on the numerical techniques as well as
the spatio-temporal discretization are provided as a complementary material to the
result sections.
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Table B.1: Main parameters of the DNSs exploited for the network analysis. The
first column refers to the Chapter in which the corresponding data are used.

Chpt Reτ Lx,DNS Lz,DNS ∆x+ ∆z+ ∆y+
max ∆t+

DNS T +

5 1000 8πH 3πH 12.26 6.13 6.16 0.325 1298.3

5-6 180 4πH 4/3πH 15.6 2.6 2.95 0.045 112.5 − 450

6 590 8πH πH 19.31 4.83 7.24 0.07375 370

7 950 2πH πH 7.8 3.9 7.8 0.095 15200

B.2 Details of the DNS at Reτ = 1000
In this Section we report the details of the direct numerical simulation (DNS)

of a turbulent channel flow at Reτ = 1000. The data from this simulation are
exploited to build visibility networks at different spatial positions from the velocity
field (see the results in Chapter 5, Section 5.3).

The velocity field are extracted from a DNS of a fully developed turbulent
channel flow, available from the Johns Hopkins Turbulence DataBase (JHTDB) [40,
193, 194]. The simulation is performed at the friction velocity Reynolds number
Reτ = Huτ /ν = 1000, where H = 1 is the half-channel height, ν = 5 · 10−5 UbH is
the fluid viscosity, Ub = 1 is the bulk channel velocity, and uτ = 5·10−2 is the friction
velocity (all physical parameters are dimensionless). Periodic boundary conditions
in the streamwise, x, and spanwise, z, directions are adopted, while the no-slip
condition is imposed at the top and bottom walls. Once the statistically stationary
conditions were reached, the simulation was carried on for approximately one flow-
through time, t ∈ [0,26]H/Ub, with a storage temporal step δt = 0.0065. Thus
4000 temporal frames are available. Velocity and pressure fields were computed
over the physical domain, (Lx, Ly, Lz)DNS = (8πH, 2H, 3πH), and stored with a
grid resolution (in the physical space) equal to (Nx, Ny, Nz)DNS = (2048, 512, 1536).
Further details on the simulation are available online (https://doi.org/10.7281/
T10K26QW) as well as in Ref. [194].

In this work, in order to speed-up the computation, a subset of the domain
was taken into account. In the wall-normal direction, y, due to the geometric
symmetry, only grid-points from the bottom wall to the half-channel height are
considered. In particular, a finer discretization is taken close to the wall while
grid-points with gradually increasing spacing are taken towards the center of the
channel. Differently, along the homogeneous directions, x and z, a coarse uniform
discretization is adopted, which is sufficient to guarantee the statistical stationarity
of the network results.

The selected grid-points are reported below (according to the labelling of the
online database) in the form (a : d : b), where a and b are respectively the first
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and the last index of a uniformly spaced interval, and d is a grid step size (e.g.,
(1 : 2 : 9) takes the indices {1; 3; 5; 7; 9}):

• streamwise direction, Xi = (0 : 32 : 2016);

• wall-normal direction, Yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0 : 1 : 21)
(23 : 2 : 39)
(42 : 3 : 54) and (58 : 3 : 79)
(84 : 5 : 169)
(179 : 10 : 239)
255, i.e. y+ = 996.3;

• spanwise direction, Zi = (110 : 128 : 1518).

As a result, the selected sub-domain size is (Nx, Ny, Nz) = (64, 70, 12), where the
first grid-point Yi = 0 corresponds to the wall coordinate y+ = 0 (i.e, the wall).

B.3 Details of the DNS at Reτ = 180
In this Section we report the details of the direct numerical simulation (DNS)

of a turbulent channel flow at Reτ = 180, which is exploited to build the spatial
networks from the velocity field (see the results in Chapter 6).

The Navier-Stokes equations (continuity and momentum equations) are solved
for incompressible flow,

∇ · u = 0, (B.1)
∂u

∂t
+ 1

ρ
∇pt = F − ω × u + ν∇2u, (B.2)

where u = (u, v, w) is the velocity of the fluid, ω = ∇ × u is the vorticity, pt =
p + 1

2ρu2, ν and ρ are the kinematic viscosity and mass density of the fluid, p is the
periodic part of the static pressure. Here, bold notation indicate vector quantities.
The term F corresponds to the mean driving force per unit mass, which is uniform
in space and in the streamwise direction, and chosen constant in time, in such a
way that the Reynolds number based on the friction velocity is equal to 180.

The numerical approach is based on the method employed by Kim et al. [27],
but with the time integration method by Spalart et al. [195]. A Fourier-Galerkin
approach is used in the two periodic directions, while a Chebyshev-tau method is
applied in the wall-normal direction. Instead of the velocity components, the wall-
normal component of the vorticity vector and the Laplacian of the wall-normal
velocity component are the dependent variables. In this way the incompressibility
condition of Eq. (B.1) is automatically satisfied. The non-linear terms in the Navier-
Stokes equation (B.2) are calculated in physical space by fast Fourier transform
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(FFT) with application of the 3/2 rule in both periodic directions. A combination of
a three-stage second-order accurate Runge-Kutta method and the implicit Crank-
Nicolson method is chosen according to Ref. [195]. This method has been used
and validated extensively at frictional Reynolds numbers ranging between 150 and
950 [65, 178, 191, 196, 197].

The time step, ∆t, used in the simulation equals 2.5 × 10−4H/uτ , which implies
that ∆t+ = ∆t · u2

τ /ν = 0.045 in wall-units. The number of time steps in the
simulation is 5000, which corresponds to a time Tuτ /H = 1.25, or T + = 225 in
wall-units. The DNS domain sizes, (Lx, Ly, Lz)DNS, are equal to 4πH, 2H and
4
3πH in the streamwise, wall-normal and spanwise directions, (x, y, z), respectively.
The number of Fourier modes in the streamwise and spanwise directions equals
384 and 192, respectively, while 193 grid points in the wall-normal direction are
exploited. This implies that in physical space the number of simulated grid points
equals (Nx, Ny, Nz)DNS = (576 × 193 × 288). The DNS grid spacing (in wall-units)
in the streamwise and spanwise directions are ∆x+

DNS ≈ 3.9 and ∆z+
DNS ≈ 2.6,

respectively. In the wall-normal direction, the following spacing is taken

yi = 1 − cos
[︄

(i − 1)π
Ny,DNS − 1

]︄
, (B.3)

where i = 1, . . . , Ny,DNS are the indices of the grid points in the wall-normal direc-
tion.

However, in order to have a manageable network size, the computational do-
main and the spatial discretization are reduced in the streamwise and spanwise
directions. This choice is justified by the fact that the metrics analysed (see Chap-
ter 6) are mainly dependent on the wall-normal coordinate (i.e., the inhomogeneous
direction), so that this operation does not alter the significance of the results. Ac-
cordingly, with respect to the DNS domain size and discretization, one out of every
four grid points in the x direction are selected, which results in 144 equally spaced
grid points (instead of 576). In the z-direction, 150 consecutive grid points (instead
of 288) with the same resolution of the DNS are considered. As a result, the stream-
wise spacing increases as ∆x+ = 4∆x+

DNS, while the spanwise size of the domain
reduces to Lz = Lz,DNS · Nz/Nz,DNS = 25/36πH. In the wall-normal direction,
instead, the grid points corresponding to the walls (i.e., y+ = 0 and y+ = 360)
are excluded, since in those locations the velocity time-series are constantly zero,
so that Ny = 191 (instead of 193). By doing so, the final domain considered for
the network analysis is only periodic in the x direction. The total volume of the
domain changes from Vtot,DNS ≈ 105.3H3 to Vtot ≈ 54.8H3, while the final spatial
discretization is (Nx, Ny, Nz) = (144, 191, 150).

It should be noted that the whole length of the domain is maintained in the
streamwise and wall normal directions. In fact, they are the directions of advection
and inhomogeneity of the flow, respectively, thus playing a crucial role in the chan-
nel turbulent dynamics. For instance, by retaining the whole streamwise length of
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the domain, it is possible to entirely capture elongated turbulent structures such
as streaks, which have scales of the order of Lx.

Figure B.1: (a) Mean velocity profile (in wall-units) as a function of the wall-
normal coordinate, y+. The law-of-the-wall is also shown. (b) Average two-points
correlation, ⟨C⟩u, of the streamwise velocity, u, at y+ = 3.5 (solid lines) and at
y+ = 180 (dashed lines). ⟨C⟩u is plotted as a function of the spatial separations in
the streamwise (blue) and spanwise directions (red), dx and dz, respectively.

To conclude, the mean streamwise velocity profile and the average two-point
spatial correlation of the streamwise velocity obtained from the present DNS are
shown in Figure B.1(a) and Figure B.1(b), respectively. In particular, the average
correlation, ⟨C⟩u, is evaluated at wall-normal positions equal to y+ = 3.5 (i.e., very
close to the wall) and y+ = 180 (i.e., in the center of the channel). As illustrated in
Figure B.1(b), the extent of the domain in both the homogeneous directions, x and
z, is sufficient for the average correlations to decay to zero. Moreover, as shown in
Figure B.1(b), the average correlation decays much faster in the spanwise direction
than in streamwise direction, namely the (de)correlation scales along z are shorter
than along x. This justifies the choice to take a coarser spatial discretization in the
streamwise direction than in the spanwise direction.
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B.4 Details of the DNS at Reτ = 590
In this Section we report the details of the direct numerical simulation (DNS) of

a turbulent channel flow at Reτ = 590. The data from this simulation are exploited
to build a spatial network from the streamwise velocity field as a comparison with
the analysis at Reτ = 180 (see the complementary results in Chapter 6, Section 6.4).

The numerical approach is the same described in the previous Section B.3,
namely the computational techniques and assumptions are the same. In this case,
however, a different spatial and temporal discretization is considered. Specifically,
the time step used in this simulation equals 1.25 × 10−4H/uτ , which implies that
∆t+ = ∆t·u2

τ /ν = 0.07375 in wall-units. The number of time steps in the simulation
is 5017, which corresponds to a time Tuτ /H = 0.63, or T + ≈ 370 in wall-units.
In this case, the total temporal window, T +, is selected to be proportional to
the maximum of the integral time-scale (i.e, the integral of the autocorrelation
function [4]). The DNS domain sizes, (Lx, Ly, Lz)DNS, are equal to 8πH, 2H and
πH in the streamwise, wall-normal and spanwise directions, (x, y, z), respectively.
The number of Fourier modes in the streamwise and spanwise directions equals
512 and 256, respectively, while 257 grid points in the wall-normal direction are
exploited. This implies that in physical space the number of simulated grid points
equals (Nx, Ny, Nz)DNS = (768 × 257 × 384). The DNS grid spacing (in wall-units)
in the streamwise and spanwise directions are ∆x+

DNS = 19.31 and ∆z+
DNS = 4.83,

respectively. The spacing in the wall-normal direction follows the Eq. (B.3) with
Ny = 257.

As in the case for Reτ = 180, the computational domain is reduced in the
streamwise and spanwise directions by keeping the DNS discretization, in order to
have a manageable network size. In the streamwise direction, Nx = 192 out of
768 consecutive grid points are selected, corresponding to a domain length Lx =
Lx,DNS/4. In the spanwise direction, 133 out of 384 consecutive grid points are
selected, thus corresponding to a spanwise length L+

z ≈ 642 which is comparable
with the L+

z,DNS of the simulation at Reτ = 180. As for the simulation at Reτ = 180,
the first and last grid points in the wall-normal direction are excluded (due to
no-slip condition at the wall). By doing so, the final domain considered for the
network analysis is not periodic in the homogeneous directions and the final spatial
discretization is (Nx, Ny, Nz) = (192, 255, 133).

B.5 Details of the DNS at Reτ = 950
In this Section we report the details of the direct numerical simulation (DNS)

of a turbulent channel flow at Reτ = 950, which is exploited to build the temporal
network from fluid particle trajectories (see the results in Chapter 7).

The numerical approach is the same described in the previous Section B.3,
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Figure B.2: Wall-normal profiles in wall-units of (a) the mean velocity, U+, (b) the
first derivative of U+ (i.e., the mean shear), and (c) the second derivative of U+.
The red points highlight the value of each quantity at y+ ≈ 530.

namely the computational techniques and assumptions are the same (see Eq. (B.1)
and (B.2)). In this case, however, a different spatial and temporal discretization
is considered [65]. Here, for Reτ = 950, 768 Fourier modes are used in the two
periodic directions, x and z, while 385 Chebyshev polynomials are employed in
the wall-normal direction. The time step (in wall-units) used in the simulation
equals ∆+

t,DNS = 0.095, while the grid spacing are ∆x+
DNS = 7.8, ∆z+

DNS = 3.9 and
∆y+

max ≈ 7.8 (at the channel center). To characterize the velocity field, Figure B.2
shows the wall-normal profiles (in wall-units) of the mean velocity, U+, and its
first and second derivative. Specifically, the red points highlight the wall-normal
coordinate y+ ≈ 530, which corresponds to the end of the log-law profile and the
beginning of the wake region.

In order to extract the trajectory of a generic particle i, X+
i (t+), the equation

dX+
i /dt+ = u

(︂
X+

i (t+), t+
)︂
, is solved with the same explicit second-order accurate

Runge-Kutta method as used in the solution of the NS equations (see Eq. (B.2)).
The fluid velocity is interpolated to the particle location, Xi = {Xi, Yi, Zi}, by
tri-linear interpolation. The accuracy of the numerical method has been assessed
in previous papers (see Ref.s [65, 191]). Figure B.3 shows the average pairwise
particle distance in wall-units along the three Cartesian directions, d

+
x,y,z and in

modulus, d
+, as a function of time. For short times, the largest particle distances

are along the transversal directions, y and z, while for long times (especially due to
the mean flow advection) the longitudinal component, d

+
x , dominates. It is worth

noting that the average distance in the wall-normal direction, d
+
y , is always almost

constant in time and equal to a third of the channel height (i.e., 2H/3 or 2Reτ /3
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Figure B.3: Average pairwise particle distance in wall-units as a function of time.
The dashed black line indicates one third of the channel height.

Figure B.4: Probability density function (PDF) at different times, t+, of the pair-
wise particle distance in the three Cartesian directions: (a) the streamwise direction,
x, (b) the wall-normal direction, y, and (c) the spanwise direction, z. Distances are
reported in wall units.

in wall-units). This is due to the fact that, as shown in Figure B.4, while the PDFs
of d+

x (Figure B.4(a)) and d+
z (Figure B.4(c)) significantly change due to particle

dispersion, in the wall-normal direction (because of the walls constraint) a linear
PDF for d+

y (Figure B.4(b)) is always found. This implies that the average value
d

+
y does not depend on time and equals one third of the maximum distance (equal

to 2Reτ in wall-units), as follows from a triangular distribution.
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Appendix C

Experimental measurements on
turbulent boundary layer

Some of the contents presented in this Appendix have been previously published.
Below are provided the references:

G. Iacobello, M. Marro, L. Ridolfi, P. Salizzoni, and S. Scarsoglio. “Experimental
investigation of vertical turbulent transport of a passive scalar in a boundary layer:
Statistics and visibility graph analysis”. In: Physical Review Fluids 4.10 (2019),
p. 104501. doi: 10.1103/PhysRevFluids.4.104501

C.1 Introduction
This Appendix contains details about the experimental setup employed to study

the dynamics of a passive scalar plume in a turbulent boundary layer. Specifically,
the wind tunnel characteristics and the features of the passive scalar source are
reported in Section C.2. The instrument details, the measurement procedure as
well as the data pre-processing are described in Section C.3. The results of the
network-based analysis of time-series of concentration a vertical turbulent transport
are reported in Chapter 5, Section 5.4.

C.2 Description of the wind tunnel setup
A neutrally-stratified atmospheric turbulent boundary layer (TBL) is gener-

ated in a recirculating wind tunnel of the Laboratoire de Mécanique des Fluides
et d’Acoustique at the École Centrale de Lyon, in France. The setup and the
measurement tools are the same as that adopted by Nironi et al. [71]. However,
measurements are performed in a wind tunnel which smaller than that used by
Nironi et al. [71], with a working section that is 9 m long, 1 m wide, and 0.7 m
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Figure C.1: 2D sketch of the TBL setup in a (x − y) plane [95]. The plume is
illustrated in green, while the horizontal dash-dot line refers to the source axis.
The symbols are defined in the main text. Two large-scale eddies of (Eulerian)
characteristic size λ are also depicted as rotating arrows.

high. A row of Irwin spires [198] is placed at the beginning of the test section,
while cubic roughness elements with size hr = 0.02 m are uniformly displaced on
the floor. As a result, a TBL of free-stream velocity U∞ = 4.94 m/s and thickness
δ = 0.314 m is generated, with δ evaluated as the wall-normal coordinate where the
mean velocity U = 0.95U∞. A sketch of the setup is illustrated in Figure C.1. The
Reynolds number of the experiment is evaluated as Reδ = δU∞/ν ≈ 1.034 × 105

(ν = 1.5 × 10−5 m2/s is the kinematic viscosity of air), which guarantees a well-
developed rough turbulent flow [15]. The streamwise, wall-normal and spanwise
directions are indicated as (x, y, z), respectively, and the origin of the axes is at
the wall in correspondence to the outlet section of the source (see the sketch in
Figure C.1).

A mixture of air and a passive scalar is continuously ejected from a metallic
L-shaped tube. Due to its density similar to air, Ethane (C2H6) is used as a passive
tracer. The passive scalar source is located at a streamwise distance from the
beginning of the working section approximatively equal to 17.5δ and at a wall-
normal height hs/δ ≈ 0.24. Two internal diameter configurations are considered
(see Figure C.1): Ds = 0.003 m (i.e., Ds/δ ≈ 9.55 × 10−3) and Ds = 0.006 m (i.e.,
Ds/δ ≈ 1.91 × 10−2). The Ethane-air mixture does not substantially introduce or
subtract momentum from the flow field at the source. This condition is referred
to as isokinetic [71, 78], namely the source velocity, Us, of the mixture equals the
local mean velocity, U , at the source height, Us ≡ U(y = hs) ≈ 3.37 m/s. In order
to have isokinetic conditions, the total mass flow rate, Mt = ρUsπD2

s/4, is imposed
as Mt/ρ ≈ 86 l/h for D3 and Mt/ρ ≈ 344 l/h for D6, where ρ = ρair = ρC2H6 is
the density of the air-Ethane mixture. Furthermore, to consider the recirculation
of Ethane-air in the wind tunnel, the background concentration (which increases
linearly with time) is subtracted from the recorded time-series.
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C.3 Measurement procedures
The streamwise and vertical velocity time-series, u and v, are acquired by means

of a X-probe hot-wire anemometer (HWA), while concentration time-series, c, are
recorded with a fast Flame Ionization Detector (FID) [199]. The acquisition time
is set equal to T = 180 s while the number of recorded data is 1.8×105. Each time-
series is normalized by a reference value, which is U∞ for the velocity components
(measured in m/s) and ∆c = Me/ (ρU∞δ2) for the passive scalar concentration
(measured in ppm), where Me is the mass flow rate of Ethane. To take into ac-
count the presence of random instrumental noise on c – that produces negative
concentration values – the concentration data are preprocessed as

c(x, y, z; ti) = 0, if c(x, y, z; ti) < θc, (C.1)
where θc = |minx,y,z [minti

[c(x, y, z; ti)]]| is the absolute value of the minimum am-
plitude of all concentration series for a given Ds. In other words, we set equal
to zero all concentration values that are smaller (in modulus) than the maximum
amplitude of negative values in the series. This pre-processing operation is reason-
ably valid as the values of θc are two orders of magnitude lower than the average
concentration values, and three orders of magnitude lower than the maximum c
values. Furthermore, the Reynolds decomposition is performed for velocity and
concentration time-series as u′ = u−U , v′ = v −v and c′ = c− c, where v and c are
the fixed-point time-averages of v and c, respectively. The details of the velocity
and concentration measurements are reported as follows.

Velocity measurements

Velocity time-series are acquired by means of a ±45◦ X-probe hot-wire anemome-
ter (HWA) working at a constant temperature, which allows for the simultaneous
measurements of two velocity components. The probe is calibrated by exploiting a
Pitot tube that measures a reference velocity (calibration in yaw is not performed).
In particular, the calibration velocities are decomposed into the longitudinal and
transversal velocity components by adopting a yaw correction with constant coeffi-
cients K2

1 = K2
2 = 0.0225 [200]. The experimental error at a fixed reference location

is approximately ±2% for the mean and the standard deviation.
The main features of the velocity field are shown in Figure C.2. Specifically, the

vertical profile of the mean velocity defect is displayed in Figure C.2(a), while stan-
dard deviations of the velocity components, σu and σv, and the Reynolds stress, u′v′,
are shown in Figure C.2(b) and Figure C.2(c), respectively. The vertical profiles –
measured at different streamwise locations in the range x/δ ∈ [0.65,3.90] – are in
good agreement with values reported in literature [71], and collapse rather well both
for the mean flow (Figure C.2(a)) and the velocity fluctuations (Figure C.2(b),(c)).
In particular, from the Reynolds stress profile it is possible to estimate the friction
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Figure C.2: Vertical profiles of velocity statistics normalized with the friction ve-
locity, uτ . (a) Mean velocity defect, (U∞ − U). (b) Standard deviations of the
longitudinal, σu, and vertical, σv, velocity component, depicted in black and red,
respectively. (c) Reynolds stress, −u′v′. Symbols: x/δ = 0.65, ◦; x/δ = 1.30,�;
x/δ = 2.60, •; x/δ = 3.90,♦.

velocity as uτ =
(︂
−u′v′

)︂0.5
= 0.209 m/s, by averaging the profiles of u′v′ in the

region close to the wall [71].

Concentration measurements

A fast Flame Ionization Detector (FID) is used to perform concentration mea-
surements. The FID system uses a sampling tube that is 0.3 m long, permitting a
frequency response of the instrument to about 400 Hz. The calibration is carried
out twice a day by setting ethane-air concentrations equal to 0, 500, 1000 and 5000
ppm. A linear relation holds between ethane concentration and tension response,
with slope variations (i.e., the sensitivity variations of the instrument) of about
±3%, depending on the ambient conditions. The error in the first four moments
of the concentration due to all the uncertainties in the experimental chain, is esti-
mated to be up to 4.5%. By exploiting measurements performed on different days
of distant weeks, the first two moments of the concentration are affected by an error
of 2% in the far field and 3% in the near field (this increase is due to uncertainties in
the source flow control system in the near field). For the third and fourth moments
of the concentration, the error rises up to 4.5% both in the near- and far-field.
Furthermore, in order to evaluate one-point turbulent fluxes, simultaneous mea-
surements of velocity and concentration are necessary at the same spatial location,
implying that HWA and FID systems have to be synchronized and sufficiently close
in space. The optimal distance of the FID with respect to the HWA is found to
be 5 mm in the spanwise direction, in order to avoid local perturbations induced
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by the measuring system in the flow field. The coupling HWA-FID does not re-
quire signal re-sampling or filtering, because both HWA and FID have a constant
sampling frequency (equal to 1000 Hz), so that their responses are continuous and
regular.

Finally, the vertical position, h∗
s, of the actual axis of the plume is estimated for

both D3 and D6 as the y coordinate of maximum c(y) value. In fact, the maximum
value of the mean concentration, h∗

s, along y/δ is not exactly at y = hs, but it
decreases downstream from the source mainly due to two factors: the effect of the
mean shear, ∂U/∂y, and the source wake. In order to extract a reliable value of
the wall-normal coordinate of maximum c, we fitted the vertical profiles of mean
concentration (see Figure 5.13(a)) by adopting a Gaussian distribution with total
reflection on the ground [181], defined as

cfit (x, y) = Me/ρ

2πΛyΛzUadv

[︄
exp

(︄
−(y + h∗

s)
2

2Λ2
y

)︄
+ exp

(︄
−(y − h∗

s)
2

2Λ2
y

)︄]︄
(C.2)

where Uadv is the mean streamwise velocity at the plume center of mass, h∗
s is

the vertical coordinate of the plume axis, while Λy and Λz are the wall-normal
and transversal (average) spread of the plume, respectively. The fitting function
reported in Eq. (C.2) is the most suited distribution to reproduce the vertical mean
concentration profiles [181]. In particular, here Λy, Λz and h∗

s are adopted as free
parameters of the fitting procedure. Although the value of h∗

s can also be set as
constant (as an approximation) and equal to hs, in this work we explicitly used
h∗

s as a free parameter in the Eq. (C.2) to highlight the effect of the mean shear
on the plume. By doing so, h∗

s is not fixed but depends on the source size by
moving downstream, with h∗

s ≤ hs. In Figure 5.13, the values of h∗
s are shown as

horizontal dashed and dot-dashed lines for D3 and D6, respectively. It is also worth
noting that the values of the vertical coordinate of the plume axis, h∗

s, are better
identified by the parameters of the fitting procedure than by locating the maximum
(experimental) c value. This issue is crucial in the far field (i.e., far downstream
from the source), where h∗

s > 0 whereas the maximum (experimental) c value is
located very close to the floor (i.e., (y/δ)cmax → 0, due to the plume dispersion and
the effect of the ground reflection of the plume).
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